Files
external-snapshotter/vendor/gonum.org/v1/gonum/lapack/gonum/dlasq1.go
xiangqian 728e29aa7e 1. update clientset, deepcopy using code-generator
2. add a dummy file tools.go to force "go mod vendor" to see
code-generator as dependencies
3. add a script to update CRD
4. add a README to document CRD updating steps
run go mod tidy
update README
2019-12-04 14:40:46 -08:00

101 lines
2.4 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
)
// Dlasq1 computes the singular values of an n×n bidiagonal matrix with diagonal
// d and off-diagonal e. On exit, d contains the singular values in decreasing
// order, and e is overwritten. d must have length at least n, e must have
// length at least n-1, and the input work must have length at least 4*n. Dlasq1
// will panic if these conditions are not met.
//
// Dlasq1 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dlasq1(n int, d, e, work []float64) (info int) {
if n < 0 {
panic(nLT0)
}
if n == 0 {
return info
}
switch {
case len(d) < n:
panic(shortD)
case len(e) < n-1:
panic(shortE)
case len(work) < 4*n:
panic(shortWork)
}
if n == 1 {
d[0] = math.Abs(d[0])
return info
}
if n == 2 {
d[1], d[0] = impl.Dlas2(d[0], e[0], d[1])
return info
}
// Estimate the largest singular value.
var sigmx float64
for i := 0; i < n-1; i++ {
d[i] = math.Abs(d[i])
sigmx = math.Max(sigmx, math.Abs(e[i]))
}
d[n-1] = math.Abs(d[n-1])
// Early return if sigmx is zero (matrix is already diagonal).
if sigmx == 0 {
impl.Dlasrt(lapack.SortDecreasing, n, d)
return info
}
for i := 0; i < n; i++ {
sigmx = math.Max(sigmx, d[i])
}
// Copy D and E into WORK (in the Z format) and scale (squaring the
// input data makes scaling by a power of the radix pointless).
eps := dlamchP
safmin := dlamchS
scale := math.Sqrt(eps / safmin)
bi := blas64.Implementation()
bi.Dcopy(n, d, 1, work, 2)
bi.Dcopy(n-1, e, 1, work[1:], 2)
impl.Dlascl(lapack.General, 0, 0, sigmx, scale, 2*n-1, 1, work, 1)
// Compute the q's and e's.
for i := 0; i < 2*n-1; i++ {
work[i] *= work[i]
}
work[2*n-1] = 0
info = impl.Dlasq2(n, work)
if info == 0 {
for i := 0; i < n; i++ {
d[i] = math.Sqrt(work[i])
}
impl.Dlascl(lapack.General, 0, 0, scale, sigmx, n, 1, d, 1)
} else if info == 2 {
// Maximum number of iterations exceeded. Move data from work
// into D and E so the calling subroutine can try to finish.
for i := 0; i < n; i++ {
d[i] = math.Sqrt(work[2*i])
e[i] = math.Sqrt(work[2*i+1])
}
impl.Dlascl(lapack.General, 0, 0, scale, sigmx, n, 1, d, 1)
impl.Dlascl(lapack.General, 0, 0, scale, sigmx, n, 1, e, 1)
}
return info
}