Bumping k8s dependencies to 1.13

This commit is contained in:
Cheng Xing
2018-11-16 14:08:25 -08:00
parent 305407125c
commit b4c0b68ec7
8002 changed files with 884099 additions and 276228 deletions

View File

@@ -13,6 +13,7 @@ import (
"bufio"
"bytes"
"crypto"
"fmt"
"hash"
"io"
"net/textproto"
@@ -177,8 +178,9 @@ func Decode(data []byte) (b *Block, rest []byte) {
// message.
type dashEscaper struct {
buffered *bufio.Writer
h hash.Hash
hashers []hash.Hash // one per key in privateKeys
hashType crypto.Hash
toHash io.Writer // writes to all the hashes in hashers
atBeginningOfLine bool
isFirstLine bool
@@ -186,8 +188,8 @@ type dashEscaper struct {
whitespace []byte
byteBuf []byte // a one byte buffer to save allocations
privateKey *packet.PrivateKey
config *packet.Config
privateKeys []*packet.PrivateKey
config *packet.Config
}
func (d *dashEscaper) Write(data []byte) (n int, err error) {
@@ -198,7 +200,7 @@ func (d *dashEscaper) Write(data []byte) (n int, err error) {
// The final CRLF isn't included in the hash so we have to wait
// until this point (the start of the next line) before writing it.
if !d.isFirstLine {
d.h.Write(crlf)
d.toHash.Write(crlf)
}
d.isFirstLine = false
}
@@ -219,12 +221,12 @@ func (d *dashEscaper) Write(data []byte) (n int, err error) {
if _, err = d.buffered.Write(dashEscape); err != nil {
return
}
d.h.Write(d.byteBuf)
d.toHash.Write(d.byteBuf)
d.atBeginningOfLine = false
} else if b == '\n' {
// Nothing to do because we delay writing CRLF to the hash.
} else {
d.h.Write(d.byteBuf)
d.toHash.Write(d.byteBuf)
d.atBeginningOfLine = false
}
if err = d.buffered.WriteByte(b); err != nil {
@@ -245,13 +247,13 @@ func (d *dashEscaper) Write(data []byte) (n int, err error) {
// Any buffered whitespace wasn't at the end of the line so
// we need to write it out.
if len(d.whitespace) > 0 {
d.h.Write(d.whitespace)
d.toHash.Write(d.whitespace)
if _, err = d.buffered.Write(d.whitespace); err != nil {
return
}
d.whitespace = d.whitespace[:0]
}
d.h.Write(d.byteBuf)
d.toHash.Write(d.byteBuf)
if err = d.buffered.WriteByte(b); err != nil {
return
}
@@ -269,25 +271,29 @@ func (d *dashEscaper) Close() (err error) {
return
}
}
sig := new(packet.Signature)
sig.SigType = packet.SigTypeText
sig.PubKeyAlgo = d.privateKey.PubKeyAlgo
sig.Hash = d.hashType
sig.CreationTime = d.config.Now()
sig.IssuerKeyId = &d.privateKey.KeyId
if err = sig.Sign(d.h, d.privateKey, d.config); err != nil {
return
}
out, err := armor.Encode(d.buffered, "PGP SIGNATURE", nil)
if err != nil {
return
}
if err = sig.Serialize(out); err != nil {
return
t := d.config.Now()
for i, k := range d.privateKeys {
sig := new(packet.Signature)
sig.SigType = packet.SigTypeText
sig.PubKeyAlgo = k.PubKeyAlgo
sig.Hash = d.hashType
sig.CreationTime = t
sig.IssuerKeyId = &k.KeyId
if err = sig.Sign(d.hashers[i], k, d.config); err != nil {
return
}
if err = sig.Serialize(out); err != nil {
return
}
}
if err = out.Close(); err != nil {
return
}
@@ -300,8 +306,17 @@ func (d *dashEscaper) Close() (err error) {
// Encode returns a WriteCloser which will clear-sign a message with privateKey
// and write it to w. If config is nil, sensible defaults are used.
func Encode(w io.Writer, privateKey *packet.PrivateKey, config *packet.Config) (plaintext io.WriteCloser, err error) {
if privateKey.Encrypted {
return nil, errors.InvalidArgumentError("signing key is encrypted")
return EncodeMulti(w, []*packet.PrivateKey{privateKey}, config)
}
// EncodeMulti returns a WriteCloser which will clear-sign a message with all the
// private keys indicated and write it to w. If config is nil, sensible defaults
// are used.
func EncodeMulti(w io.Writer, privateKeys []*packet.PrivateKey, config *packet.Config) (plaintext io.WriteCloser, err error) {
for _, k := range privateKeys {
if k.Encrypted {
return nil, errors.InvalidArgumentError(fmt.Sprintf("signing key %s is encrypted", k.KeyIdString()))
}
}
hashType := config.Hash()
@@ -313,7 +328,14 @@ func Encode(w io.Writer, privateKey *packet.PrivateKey, config *packet.Config) (
if !hashType.Available() {
return nil, errors.UnsupportedError("unsupported hash type: " + strconv.Itoa(int(hashType)))
}
h := hashType.New()
var hashers []hash.Hash
var ws []io.Writer
for range privateKeys {
h := hashType.New()
hashers = append(hashers, h)
ws = append(ws, h)
}
toHash := io.MultiWriter(ws...)
buffered := bufio.NewWriter(w)
// start has a \n at the beginning that we don't want here.
@@ -338,16 +360,17 @@ func Encode(w io.Writer, privateKey *packet.PrivateKey, config *packet.Config) (
plaintext = &dashEscaper{
buffered: buffered,
h: h,
hashers: hashers,
hashType: hashType,
toHash: toHash,
atBeginningOfLine: true,
isFirstLine: true,
byteBuf: make([]byte, 1),
privateKey: privateKey,
config: config,
privateKeys: privateKeys,
config: config,
}
return

View File

@@ -6,8 +6,11 @@ package clearsign
import (
"bytes"
"golang.org/x/crypto/openpgp"
"fmt"
"testing"
"golang.org/x/crypto/openpgp"
"golang.org/x/crypto/openpgp/packet"
)
func testParse(t *testing.T, input []byte, expected, expectedPlaintext string) {
@@ -125,6 +128,71 @@ func TestSigning(t *testing.T) {
}
}
// We use this to make test keys, so that they aren't all the same.
type quickRand byte
func (qr *quickRand) Read(p []byte) (int, error) {
for i := range p {
p[i] = byte(*qr)
}
*qr++
return len(p), nil
}
func TestMultiSign(t *testing.T) {
zero := quickRand(0)
config := packet.Config{Rand: &zero}
for nKeys := 0; nKeys < 4; nKeys++ {
nextTest:
for nExtra := 0; nExtra < 4; nExtra++ {
var signKeys []*packet.PrivateKey
var verifyKeys openpgp.EntityList
desc := fmt.Sprintf("%d keys; %d of which will be used to verify", nKeys+nExtra, nKeys)
for i := 0; i < nKeys+nExtra; i++ {
e, err := openpgp.NewEntity("name", "comment", "email", &config)
if err != nil {
t.Errorf("cannot create key: %v", err)
continue nextTest
}
if i < nKeys {
verifyKeys = append(verifyKeys, e)
}
signKeys = append(signKeys, e.PrivateKey)
}
input := []byte("this is random text\r\n4 17")
var output bytes.Buffer
w, err := EncodeMulti(&output, signKeys, nil)
if err != nil {
t.Errorf("EncodeMulti (%s) failed: %v", desc, err)
}
if _, err := w.Write(input); err != nil {
t.Errorf("Write(%q) to signer (%s) failed: %v", string(input), desc, err)
}
if err := w.Close(); err != nil {
t.Errorf("Close() of signer (%s) failed: %v", desc, err)
}
block, _ := Decode(output.Bytes())
if string(block.Bytes) != string(input) {
t.Errorf("Inline data didn't match original; got %q want %q", string(block.Bytes), string(input))
}
_, err = openpgp.CheckDetachedSignature(verifyKeys, bytes.NewReader(block.Bytes), block.ArmoredSignature.Body)
if nKeys == 0 {
if err == nil {
t.Errorf("verifying inline (%s) succeeded; want failure", desc)
}
} else {
if err != nil {
t.Errorf("verifying inline (%s) failed (%v); want success", desc, err)
}
}
}
}
}
var clearsignInput = []byte(`
;lasjlkfdsa

View File

@@ -333,7 +333,6 @@ func ReadEntity(packets *packet.Reader) (*Entity, error) {
return nil, errors.StructuralError("primary key cannot be used for signatures")
}
var current *Identity
var revocations []*packet.Signature
EachPacket:
for {
@@ -346,32 +345,8 @@ EachPacket:
switch pkt := p.(type) {
case *packet.UserId:
current = new(Identity)
current.Name = pkt.Id
current.UserId = pkt
e.Identities[pkt.Id] = current
for {
p, err = packets.Next()
if err == io.EOF {
return nil, io.ErrUnexpectedEOF
} else if err != nil {
return nil, err
}
sig, ok := p.(*packet.Signature)
if !ok {
return nil, errors.StructuralError("user ID packet not followed by self-signature")
}
if (sig.SigType == packet.SigTypePositiveCert || sig.SigType == packet.SigTypeGenericCert) && sig.IssuerKeyId != nil && *sig.IssuerKeyId == e.PrimaryKey.KeyId {
if err = e.PrimaryKey.VerifyUserIdSignature(pkt.Id, e.PrimaryKey, sig); err != nil {
return nil, errors.StructuralError("user ID self-signature invalid: " + err.Error())
}
current.SelfSignature = sig
break
}
current.Signatures = append(current.Signatures, sig)
if err := addUserID(e, packets, pkt); err != nil {
return nil, err
}
case *packet.Signature:
if pkt.SigType == packet.SigTypeKeyRevocation {
@@ -380,11 +355,9 @@ EachPacket:
// TODO: RFC4880 5.2.1 permits signatures
// directly on keys (eg. to bind additional
// revocation keys).
} else if current == nil {
return nil, errors.StructuralError("signature packet found before user id packet")
} else {
current.Signatures = append(current.Signatures, pkt)
}
// Else, ignoring the signature as it does not follow anything
// we would know to attach it to.
case *packet.PrivateKey:
if pkt.IsSubkey == false {
packets.Unread(p)
@@ -425,33 +398,105 @@ EachPacket:
return e, nil
}
func addUserID(e *Entity, packets *packet.Reader, pkt *packet.UserId) error {
// Make a new Identity object, that we might wind up throwing away.
// We'll only add it if we get a valid self-signature over this
// userID.
identity := new(Identity)
identity.Name = pkt.Id
identity.UserId = pkt
for {
p, err := packets.Next()
if err == io.EOF {
break
} else if err != nil {
return err
}
sig, ok := p.(*packet.Signature)
if !ok {
packets.Unread(p)
break
}
if (sig.SigType == packet.SigTypePositiveCert || sig.SigType == packet.SigTypeGenericCert) && sig.IssuerKeyId != nil && *sig.IssuerKeyId == e.PrimaryKey.KeyId {
if err = e.PrimaryKey.VerifyUserIdSignature(pkt.Id, e.PrimaryKey, sig); err != nil {
return errors.StructuralError("user ID self-signature invalid: " + err.Error())
}
identity.SelfSignature = sig
e.Identities[pkt.Id] = identity
} else {
identity.Signatures = append(identity.Signatures, sig)
}
}
return nil
}
func addSubkey(e *Entity, packets *packet.Reader, pub *packet.PublicKey, priv *packet.PrivateKey) error {
var subKey Subkey
subKey.PublicKey = pub
subKey.PrivateKey = priv
p, err := packets.Next()
if err == io.EOF {
return io.ErrUnexpectedEOF
for {
p, err := packets.Next()
if err == io.EOF {
break
} else if err != nil {
return errors.StructuralError("subkey signature invalid: " + err.Error())
}
sig, ok := p.(*packet.Signature)
if !ok {
packets.Unread(p)
break
}
if sig.SigType != packet.SigTypeSubkeyBinding && sig.SigType != packet.SigTypeSubkeyRevocation {
return errors.StructuralError("subkey signature with wrong type")
}
if err := e.PrimaryKey.VerifyKeySignature(subKey.PublicKey, sig); err != nil {
return errors.StructuralError("subkey signature invalid: " + err.Error())
}
switch sig.SigType {
case packet.SigTypeSubkeyRevocation:
subKey.Sig = sig
case packet.SigTypeSubkeyBinding:
if shouldReplaceSubkeySig(subKey.Sig, sig) {
subKey.Sig = sig
}
}
}
if err != nil {
return errors.StructuralError("subkey signature invalid: " + err.Error())
}
var ok bool
subKey.Sig, ok = p.(*packet.Signature)
if !ok {
if subKey.Sig == nil {
return errors.StructuralError("subkey packet not followed by signature")
}
if subKey.Sig.SigType != packet.SigTypeSubkeyBinding && subKey.Sig.SigType != packet.SigTypeSubkeyRevocation {
return errors.StructuralError("subkey signature with wrong type")
}
err = e.PrimaryKey.VerifyKeySignature(subKey.PublicKey, subKey.Sig)
if err != nil {
return errors.StructuralError("subkey signature invalid: " + err.Error())
}
e.Subkeys = append(e.Subkeys, subKey)
return nil
}
func shouldReplaceSubkeySig(existingSig, potentialNewSig *packet.Signature) bool {
if potentialNewSig == nil {
return false
}
if existingSig == nil {
return true
}
if existingSig.SigType == packet.SigTypeSubkeyRevocation {
return false // never override a revocation signature
}
return potentialNewSig.CreationTime.After(existingSig.CreationTime)
}
const defaultRSAKeyBits = 2048
// NewEntity returns an Entity that contains a fresh RSA/RSA keypair with a
@@ -500,6 +545,10 @@ func NewEntity(name, comment, email string, config *packet.Config) (*Entity, err
IssuerKeyId: &e.PrimaryKey.KeyId,
},
}
err = e.Identities[uid.Id].SelfSignature.SignUserId(uid.Id, e.PrimaryKey, e.PrivateKey, config)
if err != nil {
return nil, err
}
// If the user passes in a DefaultHash via packet.Config,
// set the PreferredHash for the SelfSignature.
@@ -529,13 +578,16 @@ func NewEntity(name, comment, email string, config *packet.Config) (*Entity, err
}
e.Subkeys[0].PublicKey.IsSubkey = true
e.Subkeys[0].PrivateKey.IsSubkey = true
err = e.Subkeys[0].Sig.SignKey(e.Subkeys[0].PublicKey, e.PrivateKey, config)
if err != nil {
return nil, err
}
return e, nil
}
// SerializePrivate serializes an Entity, including private key material, to
// the given Writer. For now, it must only be used on an Entity returned from
// NewEntity.
// SerializePrivate serializes an Entity, including private key material, but
// excluding signatures from other entities, to the given Writer.
// Identities and subkeys are re-signed in case they changed since NewEntry.
// If config is nil, sensible defaults will be used.
func (e *Entity) SerializePrivate(w io.Writer, config *packet.Config) (err error) {
err = e.PrivateKey.Serialize(w)
@@ -573,8 +625,8 @@ func (e *Entity) SerializePrivate(w io.Writer, config *packet.Config) (err error
return nil
}
// Serialize writes the public part of the given Entity to w. (No private
// key material will be output).
// Serialize writes the public part of the given Entity to w, including
// signatures from other entities. No private key material will be output.
func (e *Entity) Serialize(w io.Writer) error {
err := e.PrimaryKey.Serialize(w)
if err != nil {

200
vendor/golang.org/x/crypto/openpgp/keys_data_test.go generated vendored Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -42,12 +42,18 @@ func (e *EncryptedKey) parse(r io.Reader) (err error) {
switch e.Algo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly:
e.encryptedMPI1.bytes, e.encryptedMPI1.bitLength, err = readMPI(r)
if err != nil {
return
}
case PubKeyAlgoElGamal:
e.encryptedMPI1.bytes, e.encryptedMPI1.bitLength, err = readMPI(r)
if err != nil {
return
}
e.encryptedMPI2.bytes, e.encryptedMPI2.bitLength, err = readMPI(r)
if err != nil {
return
}
}
_, err = consumeAll(r)
return
@@ -72,7 +78,8 @@ func (e *EncryptedKey) Decrypt(priv *PrivateKey, config *Config) error {
// padding oracle attacks.
switch priv.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly:
b, err = rsa.DecryptPKCS1v15(config.Random(), priv.PrivateKey.(*rsa.PrivateKey), e.encryptedMPI1.bytes)
k := priv.PrivateKey.(*rsa.PrivateKey)
b, err = rsa.DecryptPKCS1v15(config.Random(), k, padToKeySize(&k.PublicKey, e.encryptedMPI1.bytes))
case PubKeyAlgoElGamal:
c1 := new(big.Int).SetBytes(e.encryptedMPI1.bytes)
c2 := new(big.Int).SetBytes(e.encryptedMPI2.bytes)

View File

@@ -39,39 +39,44 @@ var encryptedKeyPriv = &PrivateKey{
}
func TestDecryptingEncryptedKey(t *testing.T) {
const encryptedKeyHex = "c18c032a67d68660df41c70104005789d0de26b6a50c985a02a13131ca829c413a35d0e6fa8d6842599252162808ac7439c72151c8c6183e76923fe3299301414d0c25a2f06a2257db3839e7df0ec964773f6e4c4ac7ff3b48c444237166dd46ba8ff443a5410dc670cb486672fdbe7c9dfafb75b4fea83af3a204fe2a7dfa86bd20122b4f3d2646cbeecb8f7be8"
const expectedKeyHex = "d930363f7e0308c333b9618617ea728963d8df993665ae7be1092d4926fd864b"
for i, encryptedKeyHex := range []string{
"c18c032a67d68660df41c70104005789d0de26b6a50c985a02a13131ca829c413a35d0e6fa8d6842599252162808ac7439c72151c8c6183e76923fe3299301414d0c25a2f06a2257db3839e7df0ec964773f6e4c4ac7ff3b48c444237166dd46ba8ff443a5410dc670cb486672fdbe7c9dfafb75b4fea83af3a204fe2a7dfa86bd20122b4f3d2646cbeecb8f7be8",
// MPI can be shorter than the length of the key.
"c18b032a67d68660df41c70103f8e520c52ae9807183c669ce26e772e482dc5d8cf60e6f59316e145be14d2e5221ee69550db1d5618a8cb002a719f1f0b9345bde21536d410ec90ba86cac37748dec7933eb7f9873873b2d61d3321d1cd44535014f6df58f7bc0c7afb5edc38e1a974428997d2f747f9a173bea9ca53079b409517d332df62d805564cffc9be6",
} {
const expectedKeyHex = "d930363f7e0308c333b9618617ea728963d8df993665ae7be1092d4926fd864b"
p, err := Read(readerFromHex(encryptedKeyHex))
if err != nil {
t.Errorf("error from Read: %s", err)
return
}
ek, ok := p.(*EncryptedKey)
if !ok {
t.Errorf("didn't parse an EncryptedKey, got %#v", p)
return
}
p, err := Read(readerFromHex(encryptedKeyHex))
if err != nil {
t.Errorf("#%d: error from Read: %s", i, err)
return
}
ek, ok := p.(*EncryptedKey)
if !ok {
t.Errorf("#%d: didn't parse an EncryptedKey, got %#v", i, p)
return
}
if ek.KeyId != 0x2a67d68660df41c7 || ek.Algo != PubKeyAlgoRSA {
t.Errorf("unexpected EncryptedKey contents: %#v", ek)
return
}
if ek.KeyId != 0x2a67d68660df41c7 || ek.Algo != PubKeyAlgoRSA {
t.Errorf("#%d: unexpected EncryptedKey contents: %#v", i, ek)
return
}
err = ek.Decrypt(encryptedKeyPriv, nil)
if err != nil {
t.Errorf("error from Decrypt: %s", err)
return
}
err = ek.Decrypt(encryptedKeyPriv, nil)
if err != nil {
t.Errorf("#%d: error from Decrypt: %s", i, err)
return
}
if ek.CipherFunc != CipherAES256 {
t.Errorf("unexpected EncryptedKey contents: %#v", ek)
return
}
if ek.CipherFunc != CipherAES256 {
t.Errorf("#%d: unexpected EncryptedKey contents: %#v", i, ek)
return
}
keyHex := fmt.Sprintf("%x", ek.Key)
if keyHex != expectedKeyHex {
t.Errorf("bad key, got %s want %x", keyHex, expectedKeyHex)
keyHex := fmt.Sprintf("%x", ek.Key)
if keyHex != expectedKeyHex {
t.Errorf("#%d: bad key, got %s want %s", i, keyHex, expectedKeyHex)
}
}
}
@@ -121,7 +126,7 @@ func TestEncryptingEncryptedKey(t *testing.T) {
keyHex := fmt.Sprintf("%x", ek.Key)
if keyHex != expectedKeyHex {
t.Errorf("bad key, got %s want %x", keyHex, expectedKeyHex)
t.Errorf("bad key, got %s want %s", keyHex, expectedKeyHex)
}
}

View File

@@ -11,10 +11,12 @@ import (
"crypto/aes"
"crypto/cipher"
"crypto/des"
"golang.org/x/crypto/cast5"
"golang.org/x/crypto/openpgp/errors"
"crypto/rsa"
"io"
"math/big"
"golang.org/x/crypto/cast5"
"golang.org/x/crypto/openpgp/errors"
)
// readFull is the same as io.ReadFull except that reading zero bytes returns
@@ -402,14 +404,16 @@ const (
type PublicKeyAlgorithm uint8
const (
PubKeyAlgoRSA PublicKeyAlgorithm = 1
PubKeyAlgoRSAEncryptOnly PublicKeyAlgorithm = 2
PubKeyAlgoRSASignOnly PublicKeyAlgorithm = 3
PubKeyAlgoElGamal PublicKeyAlgorithm = 16
PubKeyAlgoDSA PublicKeyAlgorithm = 17
PubKeyAlgoRSA PublicKeyAlgorithm = 1
PubKeyAlgoElGamal PublicKeyAlgorithm = 16
PubKeyAlgoDSA PublicKeyAlgorithm = 17
// RFC 6637, Section 5.
PubKeyAlgoECDH PublicKeyAlgorithm = 18
PubKeyAlgoECDSA PublicKeyAlgorithm = 19
// Deprecated in RFC 4880, Section 13.5. Use key flags instead.
PubKeyAlgoRSAEncryptOnly PublicKeyAlgorithm = 2
PubKeyAlgoRSASignOnly PublicKeyAlgorithm = 3
)
// CanEncrypt returns true if it's possible to encrypt a message to a public
@@ -500,19 +504,17 @@ func readMPI(r io.Reader) (mpi []byte, bitLength uint16, err error) {
numBytes := (int(bitLength) + 7) / 8
mpi = make([]byte, numBytes)
_, err = readFull(r, mpi)
return
}
// mpiLength returns the length of the given *big.Int when serialized as an
// MPI.
func mpiLength(n *big.Int) (mpiLengthInBytes int) {
mpiLengthInBytes = 2 /* MPI length */
mpiLengthInBytes += (n.BitLen() + 7) / 8
// According to RFC 4880 3.2. we should check that the MPI has no leading
// zeroes (at least when not an encrypted MPI?), but this implementation
// does generate leading zeroes, so we keep accepting them.
return
}
// writeMPI serializes a big integer to w.
func writeMPI(w io.Writer, bitLength uint16, mpiBytes []byte) (err error) {
// Note that we can produce leading zeroes, in violation of RFC 4880 3.2.
// Implementations seem to be tolerant of them, and stripping them would
// make it complex to guarantee matching re-serialization.
_, err = w.Write([]byte{byte(bitLength >> 8), byte(bitLength)})
if err == nil {
_, err = w.Write(mpiBytes)
@@ -525,6 +527,18 @@ func writeBig(w io.Writer, i *big.Int) error {
return writeMPI(w, uint16(i.BitLen()), i.Bytes())
}
// padToKeySize left-pads a MPI with zeroes to match the length of the
// specified RSA public.
func padToKeySize(pub *rsa.PublicKey, b []byte) []byte {
k := (pub.N.BitLen() + 7) / 8
if len(b) >= k {
return b
}
bb := make([]byte, k)
copy(bb[len(bb)-len(b):], b)
return bb
}
// CompressionAlgo Represents the different compression algorithms
// supported by OpenPGP (except for BZIP2, which is not currently
// supported). See Section 9.3 of RFC 4880.

View File

@@ -64,14 +64,19 @@ func NewECDSAPrivateKey(currentTime time.Time, priv *ecdsa.PrivateKey) *PrivateK
return pk
}
// NewSignerPrivateKey creates a sign-only PrivateKey from a crypto.Signer that
// NewSignerPrivateKey creates a PrivateKey from a crypto.Signer that
// implements RSA or ECDSA.
func NewSignerPrivateKey(currentTime time.Time, signer crypto.Signer) *PrivateKey {
pk := new(PrivateKey)
// In general, the public Keys should be used as pointers. We still
// type-switch on the values, for backwards-compatibility.
switch pubkey := signer.Public().(type) {
case *rsa.PublicKey:
pk.PublicKey = *NewRSAPublicKey(currentTime, pubkey)
case rsa.PublicKey:
pk.PublicKey = *NewRSAPublicKey(currentTime, &pubkey)
pk.PubKeyAlgo = PubKeyAlgoRSASignOnly
case *ecdsa.PublicKey:
pk.PublicKey = *NewECDSAPublicKey(currentTime, pubkey)
case ecdsa.PublicKey:
pk.PublicKey = *NewECDSAPublicKey(currentTime, &pubkey)
default:

View File

@@ -14,7 +14,6 @@ import (
"crypto/x509"
"encoding/hex"
"hash"
"io"
"testing"
"time"
)
@@ -162,15 +161,7 @@ func TestECDSAPrivateKey(t *testing.T) {
}
type rsaSigner struct {
priv *rsa.PrivateKey
}
func (s *rsaSigner) Public() crypto.PublicKey {
return s.priv.PublicKey
}
func (s *rsaSigner) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
return s.priv.Sign(rand, msg, opts)
*rsa.PrivateKey
}
func TestRSASignerPrivateKey(t *testing.T) {
@@ -181,12 +172,8 @@ func TestRSASignerPrivateKey(t *testing.T) {
priv := NewSignerPrivateKey(time.Now(), &rsaSigner{rsaPriv})
if priv.PubKeyAlgo != PubKeyAlgoRSASignOnly {
t.Fatal("NewSignerPrivateKey should have made a sign-only RSA private key")
}
sig := &Signature{
PubKeyAlgo: PubKeyAlgoRSASignOnly,
PubKeyAlgo: PubKeyAlgoRSA,
Hash: crypto.SHA256,
}
msg := []byte("Hello World!")
@@ -208,15 +195,7 @@ func TestRSASignerPrivateKey(t *testing.T) {
}
type ecdsaSigner struct {
priv *ecdsa.PrivateKey
}
func (s *ecdsaSigner) Public() crypto.PublicKey {
return s.priv.PublicKey
}
func (s *ecdsaSigner) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
return s.priv.Sign(rand, msg, opts)
*ecdsa.PrivateKey
}
func TestECDSASignerPrivateKey(t *testing.T) {

View File

@@ -244,7 +244,12 @@ func NewECDSAPublicKey(creationTime time.Time, pub *ecdsa.PublicKey) *PublicKey
}
pk.ec.p.bytes = elliptic.Marshal(pub.Curve, pub.X, pub.Y)
pk.ec.p.bitLength = uint16(8 * len(pk.ec.p.bytes))
// The bit length is 3 (for the 0x04 specifying an uncompressed key)
// plus two field elements (for x and y), which are rounded up to the
// nearest byte. See https://tools.ietf.org/html/rfc6637#section-6
fieldBytes := (pub.Curve.Params().BitSize + 7) & ^7
pk.ec.p.bitLength = uint16(3 + fieldBytes + fieldBytes)
pk.setFingerPrintAndKeyId()
return pk
@@ -515,7 +520,7 @@ func (pk *PublicKey) VerifySignature(signed hash.Hash, sig *Signature) (err erro
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
rsaPublicKey, _ := pk.PublicKey.(*rsa.PublicKey)
err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, sig.RSASignature.bytes)
err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, padToKeySize(rsaPublicKey, sig.RSASignature.bytes))
if err != nil {
return errors.SignatureError("RSA verification failure")
}
@@ -566,7 +571,7 @@ func (pk *PublicKey) VerifySignatureV3(signed hash.Hash, sig *SignatureV3) (err
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
rsaPublicKey := pk.PublicKey.(*rsa.PublicKey)
if err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, sig.RSASignature.bytes); err != nil {
if err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, padToKeySize(rsaPublicKey, sig.RSASignature.bytes)); err != nil {
return errors.SignatureError("RSA verification failure")
}
return

View File

@@ -6,7 +6,10 @@ package packet
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"encoding/hex"
"math/big"
"testing"
"time"
)
@@ -186,6 +189,29 @@ func TestEcc384Serialize(t *testing.T) {
}
}
func TestP256KeyID(t *testing.T) {
// Confirm that key IDs are correctly calculated for ECC keys.
ecdsaPub := &ecdsa.PublicKey{
Curve: elliptic.P256(),
X: fromHex("81fbbc20eea9e8d1c3ceabb0a8185925b113d1ac42cd5c78403bd83da19235c6"),
Y: fromHex("5ed6db13d91db34507d0129bf88981878d29adbf8fcd1720afdb767bb3fcaaff"),
}
pub := NewECDSAPublicKey(time.Unix(1297309478, 0), ecdsaPub)
const want = uint64(0xd01055fbcadd268e)
if pub.KeyId != want {
t.Errorf("want key ID: %x, got %x", want, pub.KeyId)
}
}
func fromHex(hex string) *big.Int {
n, ok := new(big.Int).SetString(hex, 16)
if !ok {
panic("bad hex number: " + hex)
}
return n
}
const rsaFingerprintHex = "5fb74b1d03b1e3cb31bc2f8aa34d7e18c20c31bb"
const rsaPkDataHex = "988d044d3c5c10010400b1d13382944bd5aba23a4312968b5095d14f947f600eb478e14a6fcb16b0e0cac764884909c020bc495cfcc39a935387c661507bdb236a0612fb582cac3af9b29cc2c8c70090616c41b662f4da4c1201e195472eb7f4ae1ccbcbf9940fe21d985e379a5563dde5b9a23d35f1cfaa5790da3b79db26f23695107bfaca8e7b5bcd0011010001"

View File

@@ -542,7 +542,7 @@ func (sig *Signature) Sign(h hash.Hash, priv *PrivateKey, config *Config) (err e
r, s, err = ecdsa.Sign(config.Random(), pk, digest)
} else {
var b []byte
b, err = priv.PrivateKey.(crypto.Signer).Sign(config.Random(), digest, nil)
b, err = priv.PrivateKey.(crypto.Signer).Sign(config.Random(), digest, sig.Hash)
if err == nil {
r, s, err = unwrapECDSASig(b)
}

View File

@@ -80,7 +80,7 @@ func (uat *UserAttribute) Serialize(w io.Writer) (err error) {
// ImageData returns zero or more byte slices, each containing
// JPEG File Interchange Format (JFIF), for each photo in the
// the user attribute packet.
// user attribute packet.
func (uat *UserAttribute) ImageData() (imageData [][]byte) {
for _, sp := range uat.Contents {
if sp.SubType == UserAttrImageSubpacket && len(sp.Contents) > 16 {

View File

@@ -124,7 +124,7 @@ func checkSignedMessage(t *testing.T, signedHex, expected string) {
return
}
if !md.IsSigned || md.SignedByKeyId != 0xa34d7e18c20c31bb || md.SignedBy == nil || md.IsEncrypted || md.IsSymmetricallyEncrypted || len(md.EncryptedToKeyIds) != 0 || md.IsSymmetricallyEncrypted {
if !md.IsSigned || md.SignedByKeyId != 0xa34d7e18c20c31bb || md.SignedBy == nil || md.IsEncrypted || md.IsSymmetricallyEncrypted || len(md.EncryptedToKeyIds) != 0 || md.DecryptedWith != (Key{}) {
t.Errorf("bad MessageDetails: %#v", md)
}

View File

@@ -164,12 +164,12 @@ func hashToHashId(h crypto.Hash) uint8 {
return v
}
// Encrypt encrypts a message to a number of recipients and, optionally, signs
// it. hints contains optional information, that is also encrypted, that aids
// the recipients in processing the message. The resulting WriteCloser must
// be closed after the contents of the file have been written.
// If config is nil, sensible defaults will be used.
func Encrypt(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
// writeAndSign writes the data as a payload package and, optionally, signs
// it. hints contains optional information, that is also encrypted,
// that aids the recipients in processing the message. The resulting
// WriteCloser must be closed after the contents of the file have been
// written. If config is nil, sensible defaults will be used.
func writeAndSign(payload io.WriteCloser, candidateHashes []uint8, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
var signer *packet.PrivateKey
if signed != nil {
signKey, ok := signed.signingKey(config.Now())
@@ -185,6 +185,83 @@ func Encrypt(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHint
}
}
var hash crypto.Hash
for _, hashId := range candidateHashes {
if h, ok := s2k.HashIdToHash(hashId); ok && h.Available() {
hash = h
break
}
}
// If the hash specified by config is a candidate, we'll use that.
if configuredHash := config.Hash(); configuredHash.Available() {
for _, hashId := range candidateHashes {
if h, ok := s2k.HashIdToHash(hashId); ok && h == configuredHash {
hash = h
break
}
}
}
if hash == 0 {
hashId := candidateHashes[0]
name, ok := s2k.HashIdToString(hashId)
if !ok {
name = "#" + strconv.Itoa(int(hashId))
}
return nil, errors.InvalidArgumentError("cannot encrypt because no candidate hash functions are compiled in. (Wanted " + name + " in this case.)")
}
if signer != nil {
ops := &packet.OnePassSignature{
SigType: packet.SigTypeBinary,
Hash: hash,
PubKeyAlgo: signer.PubKeyAlgo,
KeyId: signer.KeyId,
IsLast: true,
}
if err := ops.Serialize(payload); err != nil {
return nil, err
}
}
if hints == nil {
hints = &FileHints{}
}
w := payload
if signer != nil {
// If we need to write a signature packet after the literal
// data then we need to stop literalData from closing
// encryptedData.
w = noOpCloser{w}
}
var epochSeconds uint32
if !hints.ModTime.IsZero() {
epochSeconds = uint32(hints.ModTime.Unix())
}
literalData, err := packet.SerializeLiteral(w, hints.IsBinary, hints.FileName, epochSeconds)
if err != nil {
return nil, err
}
if signer != nil {
return signatureWriter{payload, literalData, hash, hash.New(), signer, config}, nil
}
return literalData, nil
}
// Encrypt encrypts a message to a number of recipients and, optionally, signs
// it. hints contains optional information, that is also encrypted, that aids
// the recipients in processing the message. The resulting WriteCloser must
// be closed after the contents of the file have been written.
// If config is nil, sensible defaults will be used.
func Encrypt(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
if len(to) == 0 {
return nil, errors.InvalidArgumentError("no encryption recipient provided")
}
// These are the possible ciphers that we'll use for the message.
candidateCiphers := []uint8{
uint8(packet.CipherAES128),
@@ -241,33 +318,6 @@ func Encrypt(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHint
}
}
var hash crypto.Hash
for _, hashId := range candidateHashes {
if h, ok := s2k.HashIdToHash(hashId); ok && h.Available() {
hash = h
break
}
}
// If the hash specified by config is a candidate, we'll use that.
if configuredHash := config.Hash(); configuredHash.Available() {
for _, hashId := range candidateHashes {
if h, ok := s2k.HashIdToHash(hashId); ok && h == configuredHash {
hash = h
break
}
}
}
if hash == 0 {
hashId := candidateHashes[0]
name, ok := s2k.HashIdToString(hashId)
if !ok {
name = "#" + strconv.Itoa(int(hashId))
}
return nil, errors.InvalidArgumentError("cannot encrypt because no candidate hash functions are compiled in. (Wanted " + name + " in this case.)")
}
symKey := make([]byte, cipher.KeySize())
if _, err := io.ReadFull(config.Random(), symKey); err != nil {
return nil, err
@@ -279,49 +329,37 @@ func Encrypt(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHint
}
}
encryptedData, err := packet.SerializeSymmetricallyEncrypted(ciphertext, cipher, symKey, config)
payload, err := packet.SerializeSymmetricallyEncrypted(ciphertext, cipher, symKey, config)
if err != nil {
return
}
if signer != nil {
ops := &packet.OnePassSignature{
SigType: packet.SigTypeBinary,
Hash: hash,
PubKeyAlgo: signer.PubKeyAlgo,
KeyId: signer.KeyId,
IsLast: true,
}
if err := ops.Serialize(encryptedData); err != nil {
return nil, err
}
return writeAndSign(payload, candidateHashes, signed, hints, config)
}
// Sign signs a message. The resulting WriteCloser must be closed after the
// contents of the file have been written. hints contains optional information
// that aids the recipients in processing the message.
// If config is nil, sensible defaults will be used.
func Sign(output io.Writer, signed *Entity, hints *FileHints, config *packet.Config) (input io.WriteCloser, err error) {
if signed == nil {
return nil, errors.InvalidArgumentError("no signer provided")
}
if hints == nil {
hints = &FileHints{}
// These are the possible hash functions that we'll use for the signature.
candidateHashes := []uint8{
hashToHashId(crypto.SHA256),
hashToHashId(crypto.SHA512),
hashToHashId(crypto.SHA1),
hashToHashId(crypto.RIPEMD160),
}
w := encryptedData
if signer != nil {
// If we need to write a signature packet after the literal
// data then we need to stop literalData from closing
// encryptedData.
w = noOpCloser{encryptedData}
defaultHashes := candidateHashes[len(candidateHashes)-1:]
preferredHashes := signed.primaryIdentity().SelfSignature.PreferredHash
if len(preferredHashes) == 0 {
preferredHashes = defaultHashes
}
var epochSeconds uint32
if !hints.ModTime.IsZero() {
epochSeconds = uint32(hints.ModTime.Unix())
}
literalData, err := packet.SerializeLiteral(w, hints.IsBinary, hints.FileName, epochSeconds)
if err != nil {
return nil, err
}
if signer != nil {
return signatureWriter{encryptedData, literalData, hash, hash.New(), signer, config}, nil
}
return literalData, nil
candidateHashes = intersectPreferences(candidateHashes, preferredHashes)
return writeAndSign(noOpCloser{output}, candidateHashes, signed, hints, config)
}
// signatureWriter hashes the contents of a message while passing it along to

View File

@@ -271,3 +271,92 @@ func TestEncryption(t *testing.T) {
}
}
}
var testSigningTests = []struct {
keyRingHex string
}{
{
testKeys1And2PrivateHex,
},
{
dsaElGamalTestKeysHex,
},
}
func TestSigning(t *testing.T) {
for i, test := range testSigningTests {
kring, _ := ReadKeyRing(readerFromHex(test.keyRingHex))
passphrase := []byte("passphrase")
for _, entity := range kring {
if entity.PrivateKey != nil && entity.PrivateKey.Encrypted {
err := entity.PrivateKey.Decrypt(passphrase)
if err != nil {
t.Errorf("#%d: failed to decrypt key", i)
}
}
for _, subkey := range entity.Subkeys {
if subkey.PrivateKey != nil && subkey.PrivateKey.Encrypted {
err := subkey.PrivateKey.Decrypt(passphrase)
if err != nil {
t.Errorf("#%d: failed to decrypt subkey", i)
}
}
}
}
signed := kring[0]
buf := new(bytes.Buffer)
w, err := Sign(buf, signed, nil /* no hints */, nil)
if err != nil {
t.Errorf("#%d: error in Sign: %s", i, err)
continue
}
const message = "testing"
_, err = w.Write([]byte(message))
if err != nil {
t.Errorf("#%d: error writing plaintext: %s", i, err)
continue
}
err = w.Close()
if err != nil {
t.Errorf("#%d: error closing WriteCloser: %s", i, err)
continue
}
md, err := ReadMessage(buf, kring, nil /* no prompt */, nil)
if err != nil {
t.Errorf("#%d: error reading message: %s", i, err)
continue
}
testTime, _ := time.Parse("2006-01-02", "2013-07-01")
signKey, _ := kring[0].signingKey(testTime)
expectedKeyId := signKey.PublicKey.KeyId
if md.SignedByKeyId != expectedKeyId {
t.Errorf("#%d: message signed by wrong key id, got: %v, want: %v", i, *md.SignedBy, expectedKeyId)
}
if md.SignedBy == nil {
t.Errorf("#%d: failed to find the signing Entity", i)
}
plaintext, err := ioutil.ReadAll(md.UnverifiedBody)
if err != nil {
t.Errorf("#%d: error reading contents: %v", i, err)
continue
}
if string(plaintext) != message {
t.Errorf("#%d: got: %q, want: %q", i, plaintext, message)
}
if md.SignatureError != nil {
t.Errorf("#%d: signature error: %q", i, md.SignatureError)
}
if md.Signature == nil {
t.Error("signature missing")
}
}
}