1. update clientset, deepcopy using code-generator

2. add a dummy file tools.go to force "go mod vendor" to see
code-generator as dependencies
3. add a script to update CRD
4. add a README to document CRD updating steps
run go mod tidy
update README
This commit is contained in:
xiangqian
2019-12-03 01:22:21 -08:00
parent 90533183e4
commit 728e29aa7e
1128 changed files with 167705 additions and 5135 deletions

View File

@@ -0,0 +1,151 @@
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//+build !noasm,!appengine,!safe
#include "textflag.h"
// MOVSHDUP X3, X2
#define MOVSHDUP_X3_X2 BYTE $0xF3; BYTE $0x0F; BYTE $0x16; BYTE $0xD3
// MOVSLDUP X3, X3
#define MOVSLDUP_X3_X3 BYTE $0xF3; BYTE $0x0F; BYTE $0x12; BYTE $0xDB
// ADDSUBPS X2, X3
#define ADDSUBPS_X2_X3 BYTE $0xF2; BYTE $0x0F; BYTE $0xD0; BYTE $0xDA
// MOVSHDUP X5, X4
#define MOVSHDUP_X5_X4 BYTE $0xF3; BYTE $0x0F; BYTE $0x16; BYTE $0xE5
// MOVSLDUP X5, X5
#define MOVSLDUP_X5_X5 BYTE $0xF3; BYTE $0x0F; BYTE $0x12; BYTE $0xED
// ADDSUBPS X4, X5
#define ADDSUBPS_X4_X5 BYTE $0xF2; BYTE $0x0F; BYTE $0xD0; BYTE $0xEC
// MOVSHDUP X7, X6
#define MOVSHDUP_X7_X6 BYTE $0xF3; BYTE $0x0F; BYTE $0x16; BYTE $0xF7
// MOVSLDUP X7, X7
#define MOVSLDUP_X7_X7 BYTE $0xF3; BYTE $0x0F; BYTE $0x12; BYTE $0xFF
// ADDSUBPS X6, X7
#define ADDSUBPS_X6_X7 BYTE $0xF2; BYTE $0x0F; BYTE $0xD0; BYTE $0xFE
// MOVSHDUP X9, X8
#define MOVSHDUP_X9_X8 BYTE $0xF3; BYTE $0x45; BYTE $0x0F; BYTE $0x16; BYTE $0xC1
// MOVSLDUP X9, X9
#define MOVSLDUP_X9_X9 BYTE $0xF3; BYTE $0x45; BYTE $0x0F; BYTE $0x12; BYTE $0xC9
// ADDSUBPS X8, X9
#define ADDSUBPS_X8_X9 BYTE $0xF2; BYTE $0x45; BYTE $0x0F; BYTE $0xD0; BYTE $0xC8
// func AxpyInc(alpha complex64, x, y []complex64, n, incX, incY, ix, iy uintptr)
TEXT ·AxpyInc(SB), NOSPLIT, $0
MOVQ x_base+8(FP), SI // SI = &x
MOVQ y_base+32(FP), DI // DI = &y
MOVQ n+56(FP), CX // CX = n
CMPQ CX, $0 // if n==0 { return }
JE axpyi_end
MOVQ ix+80(FP), R8 // R8 = ix
MOVQ iy+88(FP), R9 // R9 = iy
LEAQ (SI)(R8*8), SI // SI = &(x[ix])
LEAQ (DI)(R9*8), DI // DI = &(y[iy])
MOVQ DI, DX // DX = DI // Read/Write pointers
MOVQ incX+64(FP), R8 // R8 = incX
SHLQ $3, R8 // R8 *= sizeof(complex64)
MOVQ incY+72(FP), R9 // R9 = incY
SHLQ $3, R9 // R9 *= sizeof(complex64)
MOVSD alpha+0(FP), X0 // X0 = { 0, 0, imag(a), real(a) }
MOVAPS X0, X1
SHUFPS $0x11, X1, X1 // X1 = { 0, 0, real(a), imag(a) }
MOVAPS X0, X10 // Copy X0 and X1 for pipelining
MOVAPS X1, X11
MOVQ CX, BX
ANDQ $3, CX // CX = n % 4
SHRQ $2, BX // BX = floor( n / 4 )
JZ axpyi_tail // if BX == 0 { goto axpyi_tail }
axpyi_loop: // do {
MOVSD (SI), X3 // X_i = { imag(x[i+1]), real(x[i+1]) }
MOVSD (SI)(R8*1), X5
LEAQ (SI)(R8*2), SI // SI = &(SI[incX*2])
MOVSD (SI), X7
MOVSD (SI)(R8*1), X9
// X_(i-1) = { imag(x[i]), imag(x[i]) }
MOVSHDUP_X3_X2
MOVSHDUP_X5_X4
MOVSHDUP_X7_X6
MOVSHDUP_X9_X8
// X_i = { real(x[i]), real(x[i]) }
MOVSLDUP_X3_X3
MOVSLDUP_X5_X5
MOVSLDUP_X7_X7
MOVSLDUP_X9_X9
// X_(i-1) = { real(a) * imag(x[i]), imag(a) * imag(x[i]) }
// X_i = { imag(a) * real(x[i]), real(a) * real(x[i]) }
MULPS X1, X2
MULPS X0, X3
MULPS X11, X4
MULPS X10, X5
MULPS X1, X6
MULPS X0, X7
MULPS X11, X8
MULPS X10, X9
// X_i = {
// imag(result[i]): imag(a)*real(x[i]) + real(a)*imag(x[i]),
// real(result[i]): real(a)*real(x[i]) - imag(a)*imag(x[i]),
// }
ADDSUBPS_X2_X3
ADDSUBPS_X4_X5
ADDSUBPS_X6_X7
ADDSUBPS_X8_X9
// X_i = { imag(result[i]) + imag(y[i]), real(result[i]) + real(y[i]) }
MOVSD (DX), X2
MOVSD (DX)(R9*1), X4
LEAQ (DX)(R9*2), DX // DX = &(DX[incY*2])
MOVSD (DX), X6
MOVSD (DX)(R9*1), X8
ADDPS X2, X3
ADDPS X4, X5
ADDPS X6, X7
ADDPS X8, X9
MOVSD X3, (DI) // y[i] = X_i
MOVSD X5, (DI)(R9*1)
LEAQ (DI)(R9*2), DI // DI = &(DI[incDst])
MOVSD X7, (DI)
MOVSD X9, (DI)(R9*1)
LEAQ (SI)(R8*2), SI // SI = &(SI[incX*2])
LEAQ (DX)(R9*2), DX // DX = &(DX[incY*2])
LEAQ (DI)(R9*2), DI // DI = &(DI[incDst])
DECQ BX
JNZ axpyi_loop // } while --BX > 0
CMPQ CX, $0 // if CX == 0 { return }
JE axpyi_end
axpyi_tail: // do {
MOVSD (SI), X3 // X_i = { imag(x[i+1]), real(x[i+1]) }
MOVSHDUP_X3_X2 // X_(i-1) = { real(x[i]), real(x[i]) }
MOVSLDUP_X3_X3 // X_i = { imag(x[i]), imag(x[i]) }
// X_i = { imag(a) * real(x[i]), real(a) * real(x[i]) }
// X_(i-1) = { real(a) * imag(x[i]), imag(a) * imag(x[i]) }
MULPS X1, X2
MULPS X0, X3
// X_i = {
// imag(result[i]): imag(a)*real(x[i]) + real(a)*imag(x[i]),
// real(result[i]): real(a)*real(x[i]) - imag(a)*imag(x[i]),
// }
ADDSUBPS_X2_X3 // (ai*x1r+ar*x1i, ar*x1r-ai*x1i)
// X_i = { imag(result[i]) + imag(y[i]), real(result[i]) + real(y[i]) }
MOVSD (DI), X4
ADDPS X4, X3
MOVSD X3, (DI) // y[i] = X_i
ADDQ R8, SI // SI += incX
ADDQ R9, DI // DI += incY
LOOP axpyi_tail // } while --CX > 0
axpyi_end:
RET

View File

@@ -0,0 +1,156 @@
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//+build !noasm,!appengine,!safe
#include "textflag.h"
// MOVSHDUP X3, X2
#define MOVSHDUP_X3_X2 BYTE $0xF3; BYTE $0x0F; BYTE $0x16; BYTE $0xD3
// MOVSLDUP X3, X3
#define MOVSLDUP_X3_X3 BYTE $0xF3; BYTE $0x0F; BYTE $0x12; BYTE $0xDB
// ADDSUBPS X2, X3
#define ADDSUBPS_X2_X3 BYTE $0xF2; BYTE $0x0F; BYTE $0xD0; BYTE $0xDA
// MOVSHDUP X5, X4
#define MOVSHDUP_X5_X4 BYTE $0xF3; BYTE $0x0F; BYTE $0x16; BYTE $0xE5
// MOVSLDUP X5, X5
#define MOVSLDUP_X5_X5 BYTE $0xF3; BYTE $0x0F; BYTE $0x12; BYTE $0xED
// ADDSUBPS X4, X5
#define ADDSUBPS_X4_X5 BYTE $0xF2; BYTE $0x0F; BYTE $0xD0; BYTE $0xEC
// MOVSHDUP X7, X6
#define MOVSHDUP_X7_X6 BYTE $0xF3; BYTE $0x0F; BYTE $0x16; BYTE $0xF7
// MOVSLDUP X7, X7
#define MOVSLDUP_X7_X7 BYTE $0xF3; BYTE $0x0F; BYTE $0x12; BYTE $0xFF
// ADDSUBPS X6, X7
#define ADDSUBPS_X6_X7 BYTE $0xF2; BYTE $0x0F; BYTE $0xD0; BYTE $0xFE
// MOVSHDUP X9, X8
#define MOVSHDUP_X9_X8 BYTE $0xF3; BYTE $0x45; BYTE $0x0F; BYTE $0x16; BYTE $0xC1
// MOVSLDUP X9, X9
#define MOVSLDUP_X9_X9 BYTE $0xF3; BYTE $0x45; BYTE $0x0F; BYTE $0x12; BYTE $0xC9
// ADDSUBPS X8, X9
#define ADDSUBPS_X8_X9 BYTE $0xF2; BYTE $0x45; BYTE $0x0F; BYTE $0xD0; BYTE $0xC8
// func AxpyIncTo(dst []complex64, incDst, idst uintptr, alpha complex64, x, y []complex64, n, incX, incY, ix, iy uintptr)
TEXT ·AxpyIncTo(SB), NOSPLIT, $0
MOVQ dst_base+0(FP), DI // DI = &dst
MOVQ x_base+48(FP), SI // SI = &x
MOVQ y_base+72(FP), DX // DX = &y
MOVQ n+96(FP), CX // CX = n
CMPQ CX, $0 // if n==0 { return }
JE axpyi_end
MOVQ ix+120(FP), R8 // Load the first index
MOVQ iy+128(FP), R9
MOVQ idst+32(FP), R10
LEAQ (SI)(R8*8), SI // SI = &(x[ix])
LEAQ (DX)(R9*8), DX // DX = &(y[iy])
LEAQ (DI)(R10*8), DI // DI = &(dst[idst])
MOVQ incX+104(FP), R8 // Incrementors*8 for easy iteration (ADDQ)
SHLQ $3, R8
MOVQ incY+112(FP), R9
SHLQ $3, R9
MOVQ incDst+24(FP), R10
SHLQ $3, R10
MOVSD alpha+40(FP), X0 // X0 = { 0, 0, imag(a), real(a) }
MOVAPS X0, X1
SHUFPS $0x11, X1, X1 // X1 = { 0, 0, real(a), imag(a) }
MOVAPS X0, X10 // Copy X0 and X1 for pipelining
MOVAPS X1, X11
MOVQ CX, BX
ANDQ $3, CX // CX = n % 4
SHRQ $2, BX // BX = floor( n / 4 )
JZ axpyi_tail // if BX == 0 { goto axpyi_tail }
axpyi_loop: // do {
MOVSD (SI), X3 // X_i = { imag(x[i]), real(x[i]) }
MOVSD (SI)(R8*1), X5
LEAQ (SI)(R8*2), SI // SI = &(SI[incX*2])
MOVSD (SI), X7
MOVSD (SI)(R8*1), X9
// X_(i-1) = { imag(x[i]), imag(x[i]) }
MOVSHDUP_X3_X2
MOVSHDUP_X5_X4
MOVSHDUP_X7_X6
MOVSHDUP_X9_X8
// X_i = { real(x[i]), real(x[i]) }
MOVSLDUP_X3_X3
MOVSLDUP_X5_X5
MOVSLDUP_X7_X7
MOVSLDUP_X9_X9
// X_(i-1) = { real(a) * imag(x[i]), imag(a) * imag(x[i]) }
// X_i = { imag(a) * real(x[i]), real(a) * real(x[i]) }
MULPS X1, X2
MULPS X0, X3
MULPS X11, X4
MULPS X10, X5
MULPS X1, X6
MULPS X0, X7
MULPS X11, X8
MULPS X10, X9
// X_i = {
// imag(result[i]): imag(a)*real(x[i]) + real(a)*imag(x[i]),
// real(result[i]): real(a)*real(x[i]) - imag(a)*imag(x[i]),
// }
ADDSUBPS_X2_X3
ADDSUBPS_X4_X5
ADDSUBPS_X6_X7
ADDSUBPS_X8_X9
// X_i = { imag(result[i]) + imag(y[i]), real(result[i]) + real(y[i]) }
MOVSD (DX), X2
MOVSD (DX)(R9*1), X4
LEAQ (DX)(R9*2), DX // DX = &(DX[incY*2])
MOVSD (DX), X6
MOVSD (DX)(R9*1), X8
ADDPS X2, X3
ADDPS X4, X5
ADDPS X6, X7
ADDPS X8, X9
MOVSD X3, (DI) // y[i] = X_i
MOVSD X5, (DI)(R10*1)
LEAQ (DI)(R10*2), DI // DI = &(DI[incDst])
MOVSD X7, (DI)
MOVSD X9, (DI)(R10*1)
LEAQ (SI)(R8*2), SI // SI = &(SI[incX*2])
LEAQ (DX)(R9*2), DX // DX = &(DX[incY*2])
LEAQ (DI)(R10*2), DI // DI = &(DI[incDst])
DECQ BX
JNZ axpyi_loop // } while --BX > 0
CMPQ CX, $0 // if CX == 0 { return }
JE axpyi_end
axpyi_tail:
MOVSD (SI), X3 // X_i = { imag(x[i]), real(x[i]) }
MOVSHDUP_X3_X2 // X_(i-1) = { imag(x[i]), imag(x[i]) }
MOVSLDUP_X3_X3 // X_i = { real(x[i]), real(x[i]) }
// X_i = { imag(a) * real(x[i]), real(a) * real(x[i]) }
// X_(i-1) = { real(a) * imag(x[i]), imag(a) * imag(x[i]) }
MULPS X1, X2
MULPS X0, X3
// X_i = {
// imag(result[i]): imag(a)*real(x[i]) + real(a)*imag(x[i]),
// real(result[i]): real(a)*real(x[i]) - imag(a)*imag(x[i]),
// }
ADDSUBPS_X2_X3
// X_i = { imag(result[i]) + imag(y[i]), real(result[i]) + real(y[i]) }
MOVSD (DX), X4
ADDPS X4, X3
MOVSD X3, (DI) // y[i] = X_i
ADDQ R8, SI // SI += incX
ADDQ R9, DX // DX += incY
ADDQ R10, DI // DI += incDst
LOOP axpyi_tail // } while --CX > 0
axpyi_end:
RET

View File

@@ -0,0 +1,160 @@
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//+build !noasm,!appengine,!safe
#include "textflag.h"
// MOVSHDUP X3, X2
#define MOVSHDUP_X3_X2 BYTE $0xF3; BYTE $0x0F; BYTE $0x16; BYTE $0xD3
// MOVSLDUP X3, X3
#define MOVSLDUP_X3_X3 BYTE $0xF3; BYTE $0x0F; BYTE $0x12; BYTE $0xDB
// ADDSUBPS X2, X3
#define ADDSUBPS_X2_X3 BYTE $0xF2; BYTE $0x0F; BYTE $0xD0; BYTE $0xDA
// MOVSHDUP X5, X4
#define MOVSHDUP_X5_X4 BYTE $0xF3; BYTE $0x0F; BYTE $0x16; BYTE $0xE5
// MOVSLDUP X5, X5
#define MOVSLDUP_X5_X5 BYTE $0xF3; BYTE $0x0F; BYTE $0x12; BYTE $0xED
// ADDSUBPS X4, X5
#define ADDSUBPS_X4_X5 BYTE $0xF2; BYTE $0x0F; BYTE $0xD0; BYTE $0xEC
// MOVSHDUP X7, X6
#define MOVSHDUP_X7_X6 BYTE $0xF3; BYTE $0x0F; BYTE $0x16; BYTE $0xF7
// MOVSLDUP X7, X7
#define MOVSLDUP_X7_X7 BYTE $0xF3; BYTE $0x0F; BYTE $0x12; BYTE $0xFF
// ADDSUBPS X6, X7
#define ADDSUBPS_X6_X7 BYTE $0xF2; BYTE $0x0F; BYTE $0xD0; BYTE $0xFE
// MOVSHDUP X9, X8
#define MOVSHDUP_X9_X8 BYTE $0xF3; BYTE $0x45; BYTE $0x0F; BYTE $0x16; BYTE $0xC1
// MOVSLDUP X9, X9
#define MOVSLDUP_X9_X9 BYTE $0xF3; BYTE $0x45; BYTE $0x0F; BYTE $0x12; BYTE $0xC9
// ADDSUBPS X8, X9
#define ADDSUBPS_X8_X9 BYTE $0xF2; BYTE $0x45; BYTE $0x0F; BYTE $0xD0; BYTE $0xC8
// func AxpyUnitary(alpha complex64, x, y []complex64)
TEXT ·AxpyUnitary(SB), NOSPLIT, $0
MOVQ x_base+8(FP), SI // SI = &x
MOVQ y_base+32(FP), DI // DI = &y
MOVQ x_len+16(FP), CX // CX = min( len(x), len(y) )
CMPQ y_len+40(FP), CX
CMOVQLE y_len+40(FP), CX
CMPQ CX, $0 // if CX == 0 { return }
JE caxy_end
PXOR X0, X0 // Clear work registers and cache-align loop
PXOR X1, X1
MOVSD alpha+0(FP), X0 // X0 = { 0, 0, imag(a), real(a) }
SHUFPD $0, X0, X0 // X0 = { imag(a), real(a), imag(a), real(a) }
MOVAPS X0, X1
SHUFPS $0x11, X1, X1 // X1 = { real(a), imag(a), real(a), imag(a) }
XORQ AX, AX // i = 0
MOVQ DI, BX // Align on 16-byte boundary for ADDPS
ANDQ $15, BX // BX = &y & 15
JZ caxy_no_trim // if BX == 0 { goto caxy_no_trim }
// Trim first value in unaligned buffer
XORPS X2, X2 // Clear work registers and cache-align loop
XORPS X3, X3
XORPS X4, X4
MOVSD (SI)(AX*8), X3 // X3 = { imag(x[i]), real(x[i]) }
MOVSHDUP_X3_X2 // X2 = { imag(x[i]), imag(x[i]) }
MOVSLDUP_X3_X3 // X3 = { real(x[i]), real(x[i]) }
MULPS X1, X2 // X2 = { real(a) * imag(x[i]), imag(a) * imag(x[i]) }
MULPS X0, X3 // X3 = { imag(a) * real(x[i]), real(a) * real(x[i]) }
// X3 = { imag(a)*real(x[i]) + real(a)*imag(x[i]), real(a)*real(x[i]) - imag(a)*imag(x[i]) }
ADDSUBPS_X2_X3
MOVSD (DI)(AX*8), X4 // X3 += y[i]
ADDPS X4, X3
MOVSD X3, (DI)(AX*8) // y[i] = X3
INCQ AX // i++
DECQ CX // --CX
JZ caxy_end // if CX == 0 { return }
caxy_no_trim:
MOVAPS X0, X10 // Copy X0 and X1 for pipelineing
MOVAPS X1, X11
MOVQ CX, BX
ANDQ $7, CX // CX = n % 8
SHRQ $3, BX // BX = floor( n / 8 )
JZ caxy_tail // if BX == 0 { goto caxy_tail }
caxy_loop: // do {
// X_i = { imag(x[i]), real(x[i]), imag(x[i+1]), real(x[i+1]) }
MOVUPS (SI)(AX*8), X3
MOVUPS 16(SI)(AX*8), X5
MOVUPS 32(SI)(AX*8), X7
MOVUPS 48(SI)(AX*8), X9
// X_(i-1) = { imag(x[i]), imag(x[i]), imag(x[i]+1), imag(x[i]+1) }
MOVSHDUP_X3_X2
MOVSHDUP_X5_X4
MOVSHDUP_X7_X6
MOVSHDUP_X9_X8
// X_i = { real(x[i]), real(x[i]), real(x[i+1]), real(x[i+1]) }
MOVSLDUP_X3_X3
MOVSLDUP_X5_X5
MOVSLDUP_X7_X7
MOVSLDUP_X9_X9
// X_i = { imag(a) * real(x[i]), real(a) * real(x[i]),
// imag(a) * real(x[i+1]), real(a) * real(x[i+1]) }
// X_(i-1) = { real(a) * imag(x[i]), imag(a) * imag(x[i]),
// real(a) * imag(x[i+1]), imag(a) * imag(x[i+1]) }
MULPS X1, X2
MULPS X0, X3
MULPS X11, X4
MULPS X10, X5
MULPS X1, X6
MULPS X0, X7
MULPS X11, X8
MULPS X10, X9
// X_i = {
// imag(result[i]): imag(a)*real(x[i]) + real(a)*imag(x[i]),
// real(result[i]): real(a)*real(x[i]) - imag(a)*imag(x[i]),
// imag(result[i+1]): imag(a)*real(x[i+1]) + real(a)*imag(x[i+1]),
// real(result[i+1]): real(a)*real(x[i+1]) - imag(a)*imag(x[i+1]),
// }
ADDSUBPS_X2_X3
ADDSUBPS_X4_X5
ADDSUBPS_X6_X7
ADDSUBPS_X8_X9
// X_i = { imag(result[i]) + imag(y[i]), real(result[i]) + real(y[i]),
// imag(result[i+1]) + imag(y[i+1]), real(result[i+1]) + real(y[i+1]) }
ADDPS (DI)(AX*8), X3
ADDPS 16(DI)(AX*8), X5
ADDPS 32(DI)(AX*8), X7
ADDPS 48(DI)(AX*8), X9
MOVUPS X3, (DI)(AX*8) // y[i:i+1] = X_i
MOVUPS X5, 16(DI)(AX*8)
MOVUPS X7, 32(DI)(AX*8)
MOVUPS X9, 48(DI)(AX*8)
ADDQ $8, AX // i += 8
DECQ BX // --BX
JNZ caxy_loop // } while BX > 0
CMPQ CX, $0 // if CX == 0 { return }
JE caxy_end
caxy_tail: // do {
MOVSD (SI)(AX*8), X3 // X3 = { imag(x[i]), real(x[i]) }
MOVSHDUP_X3_X2 // X2 = { imag(x[i]), imag(x[i]) }
MOVSLDUP_X3_X3 // X3 = { real(x[i]), real(x[i]) }
MULPS X1, X2 // X2 = { real(a) * imag(x[i]), imag(a) * imag(x[i]) }
MULPS X0, X3 // X3 = { imag(a) * real(x[i]), real(a) * real(x[i]) }
// X3 = { imag(a)*real(x[i]) + real(a)*imag(x[i]),
// real(a)*real(x[i]) - imag(a)*imag(x[i]) }
ADDSUBPS_X2_X3
MOVSD (DI)(AX*8), X4 // X3 += y[i]
ADDPS X4, X3
MOVSD X3, (DI)(AX*8) // y[i] = X3
INCQ AX // ++i
LOOP caxy_tail // } while --CX > 0
caxy_end:
RET

View File

@@ -0,0 +1,157 @@
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//+build !noasm,!appengine,!safe
#include "textflag.h"
// MOVSHDUP X3, X2
#define MOVSHDUP_X3_X2 BYTE $0xF3; BYTE $0x0F; BYTE $0x16; BYTE $0xD3
// MOVSLDUP X3, X3
#define MOVSLDUP_X3_X3 BYTE $0xF3; BYTE $0x0F; BYTE $0x12; BYTE $0xDB
// ADDSUBPS X2, X3
#define ADDSUBPS_X2_X3 BYTE $0xF2; BYTE $0x0F; BYTE $0xD0; BYTE $0xDA
// MOVSHDUP X5, X4
#define MOVSHDUP_X5_X4 BYTE $0xF3; BYTE $0x0F; BYTE $0x16; BYTE $0xE5
// MOVSLDUP X5, X5
#define MOVSLDUP_X5_X5 BYTE $0xF3; BYTE $0x0F; BYTE $0x12; BYTE $0xED
// ADDSUBPS X4, X5
#define ADDSUBPS_X4_X5 BYTE $0xF2; BYTE $0x0F; BYTE $0xD0; BYTE $0xEC
// MOVSHDUP X7, X6
#define MOVSHDUP_X7_X6 BYTE $0xF3; BYTE $0x0F; BYTE $0x16; BYTE $0xF7
// MOVSLDUP X7, X7
#define MOVSLDUP_X7_X7 BYTE $0xF3; BYTE $0x0F; BYTE $0x12; BYTE $0xFF
// ADDSUBPS X6, X7
#define ADDSUBPS_X6_X7 BYTE $0xF2; BYTE $0x0F; BYTE $0xD0; BYTE $0xFE
// MOVSHDUP X9, X8
#define MOVSHDUP_X9_X8 BYTE $0xF3; BYTE $0x45; BYTE $0x0F; BYTE $0x16; BYTE $0xC1
// MOVSLDUP X9, X9
#define MOVSLDUP_X9_X9 BYTE $0xF3; BYTE $0x45; BYTE $0x0F; BYTE $0x12; BYTE $0xC9
// ADDSUBPS X8, X9
#define ADDSUBPS_X8_X9 BYTE $0xF2; BYTE $0x45; BYTE $0x0F; BYTE $0xD0; BYTE $0xC8
// func AxpyUnitaryTo(dst []complex64, alpha complex64, x, y []complex64)
TEXT ·AxpyUnitaryTo(SB), NOSPLIT, $0
MOVQ dst_base+0(FP), DI // DI = &dst
MOVQ x_base+32(FP), SI // SI = &x
MOVQ y_base+56(FP), DX // DX = &y
MOVQ x_len+40(FP), CX
CMPQ y_len+64(FP), CX // CX = min( len(x), len(y), len(dst) )
CMOVQLE y_len+64(FP), CX
CMPQ dst_len+8(FP), CX
CMOVQLE dst_len+8(FP), CX
CMPQ CX, $0 // if CX == 0 { return }
JE caxy_end
MOVSD alpha+24(FP), X0 // X0 = { 0, 0, imag(a), real(a) }
SHUFPD $0, X0, X0 // X0 = { imag(a), real(a), imag(a), real(a) }
MOVAPS X0, X1
SHUFPS $0x11, X1, X1 // X1 = { real(a), imag(a), real(a), imag(a) }
XORQ AX, AX // i = 0
MOVQ DX, BX // Align on 16-byte boundary for ADDPS
ANDQ $15, BX // BX = &y & 15
JZ caxy_no_trim // if BX == 0 { goto caxy_no_trim }
MOVSD (SI)(AX*8), X3 // X3 = { imag(x[i]), real(x[i]) }
MOVSHDUP_X3_X2 // X2 = { imag(x[i]), imag(x[i]) }
MOVSLDUP_X3_X3 // X3 = { real(x[i]), real(x[i]) }
MULPS X1, X2 // X2 = { real(a) * imag(x[i]), imag(a) * imag(x[i]) }
MULPS X0, X3 // X3 = { imag(a) * real(x[i]), real(a) * real(x[i]) }
// X3 = { imag(a)*real(x[i]) + real(a)*imag(x[i]), real(a)*real(x[i]) - imag(a)*imag(x[i]) }
ADDSUBPS_X2_X3
MOVSD (DX)(AX*8), X4 // X3 += y[i]
ADDPS X4, X3
MOVSD X3, (DI)(AX*8) // dst[i] = X3
INCQ AX // i++
DECQ CX // --CX
JZ caxy_tail // if BX == 0 { goto caxy_tail }
caxy_no_trim:
MOVAPS X0, X10 // Copy X0 and X1 for pipelineing
MOVAPS X1, X11
MOVQ CX, BX
ANDQ $7, CX // CX = n % 8
SHRQ $3, BX // BX = floor( n / 8 )
JZ caxy_tail // if BX == 0 { goto caxy_tail }
caxy_loop:
// X_i = { imag(x[i]), real(x[i]), imag(x[i+1]), real(x[i+1]) }
MOVUPS (SI)(AX*8), X3
MOVUPS 16(SI)(AX*8), X5
MOVUPS 32(SI)(AX*8), X7
MOVUPS 48(SI)(AX*8), X9
// X_(i-1) = { imag(x[i]), imag(x[i]), imag(x[i]+1), imag(x[i]+1) }
MOVSHDUP_X3_X2
MOVSHDUP_X5_X4
MOVSHDUP_X7_X6
MOVSHDUP_X9_X8
// X_i = { real(x[i]), real(x[i]), real(x[i+1]), real(x[i+1]) }
MOVSLDUP_X3_X3
MOVSLDUP_X5_X5
MOVSLDUP_X7_X7
MOVSLDUP_X9_X9
// X_i = { imag(a) * real(x[i]), real(a) * real(x[i]),
// imag(a) * real(x[i+1]), real(a) * real(x[i+1]) }
// X_(i-1) = { real(a) * imag(x[i]), imag(a) * imag(x[i]),
// real(a) * imag(x[i+1]), imag(a) * imag(x[i+1]) }
MULPS X1, X2
MULPS X0, X3
MULPS X11, X4
MULPS X10, X5
MULPS X1, X6
MULPS X0, X7
MULPS X11, X8
MULPS X10, X9
// X_i = {
// imag(result[i]): imag(a)*real(x[i]) + real(a)*imag(x[i]),
// real(result[i]): real(a)*real(x[i]) - imag(a)*imag(x[i]),
// imag(result[i+1]): imag(a)*real(x[i+1]) + real(a)*imag(x[i+1]),
// real(result[i+1]): real(a)*real(x[i+1]) - imag(a)*imag(x[i+1]),
// }
ADDSUBPS_X2_X3
ADDSUBPS_X4_X5
ADDSUBPS_X6_X7
ADDSUBPS_X8_X9
// X_i = { imag(result[i]) + imag(y[i]), real(result[i]) + real(y[i]),
// imag(result[i+1]) + imag(y[i+1]), real(result[i+1]) + real(y[i+1]) }
ADDPS (DX)(AX*8), X3
ADDPS 16(DX)(AX*8), X5
ADDPS 32(DX)(AX*8), X7
ADDPS 48(DX)(AX*8), X9
MOVUPS X3, (DI)(AX*8) // y[i:i+1] = X_i
MOVUPS X5, 16(DI)(AX*8)
MOVUPS X7, 32(DI)(AX*8)
MOVUPS X9, 48(DI)(AX*8)
ADDQ $8, AX // i += 8
DECQ BX // --BX
JNZ caxy_loop // } while BX > 0
CMPQ CX, $0 // if CX == 0 { return }
JE caxy_end
caxy_tail: // do {
MOVSD (SI)(AX*8), X3 // X3 = { imag(x[i]), real(x[i]) }
MOVSHDUP_X3_X2 // X2 = { imag(x[i]), imag(x[i]) }
MOVSLDUP_X3_X3 // X3 = { real(x[i]), real(x[i]) }
MULPS X1, X2 // X2 = { real(a) * imag(x[i]), imag(a) * imag(x[i]) }
MULPS X0, X3 // X3 = { imag(a) * real(x[i]), real(a) * real(x[i]) }
// X3 = { imag(a)*real(x[i]) + real(a)*imag(x[i]),
// real(a)*real(x[i]) - imag(a)*imag(x[i]) }
ADDSUBPS_X2_X3
MOVSD (DX)(AX*8), X4 // X3 += y[i]
ADDPS X4, X3
MOVSD X3, (DI)(AX*8) // y[i] = X3
INCQ AX // ++i
LOOP caxy_tail // } while --CX > 0
caxy_end:
RET

7
vendor/gonum.org/v1/gonum/internal/asm/c64/conj.go generated vendored Normal file
View File

@@ -0,0 +1,7 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package c64
func conj(c complex64) complex64 { return complex(real(c), -imag(c)) }

6
vendor/gonum.org/v1/gonum/internal/asm/c64/doc.go generated vendored Normal file
View File

@@ -0,0 +1,6 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package c64 provides complex64 vector primitives.
package c64 // import "gonum.org/v1/gonum/internal/asm/c64"

View File

@@ -0,0 +1,160 @@
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//+build !noasm,!appengine,!safe
#include "textflag.h"
#define MOVSHDUP_X3_X2 LONG $0xD3160FF3 // MOVSHDUP X3, X2
#define MOVSHDUP_X5_X4 LONG $0xE5160FF3 // MOVSHDUP X5, X4
#define MOVSHDUP_X7_X6 LONG $0xF7160FF3 // MOVSHDUP X7, X6
#define MOVSHDUP_X9_X8 LONG $0x160F45F3; BYTE $0xC1 // MOVSHDUP X9, X8
#define MOVSLDUP_X3_X3 LONG $0xDB120FF3 // MOVSLDUP X3, X3
#define MOVSLDUP_X5_X5 LONG $0xED120FF3 // MOVSLDUP X5, X5
#define MOVSLDUP_X7_X7 LONG $0xFF120FF3 // MOVSLDUP X7, X7
#define MOVSLDUP_X9_X9 LONG $0x120F45F3; BYTE $0xC9 // MOVSLDUP X9, X9
#define ADDSUBPS_X2_X3 LONG $0xDAD00FF2 // ADDSUBPS X2, X3
#define ADDSUBPS_X4_X5 LONG $0xECD00FF2 // ADDSUBPS X4, X5
#define ADDSUBPS_X6_X7 LONG $0xFED00FF2 // ADDSUBPS X6, X7
#define ADDSUBPS_X8_X9 LONG $0xD00F45F2; BYTE $0xC8 // ADDSUBPS X8, X9
#define X_PTR SI
#define Y_PTR DI
#define LEN CX
#define TAIL BX
#define SUM X0
#define P_SUM X1
#define INC_X R8
#define INCx3_X R9
#define INC_Y R10
#define INCx3_Y R11
#define NEG1 X15
#define P_NEG1 X14
// func DotcInc(x, y []complex64, n, incX, incY, ix, iy uintptr) (sum complex64)
TEXT ·DotcInc(SB), NOSPLIT, $0
MOVQ x_base+0(FP), X_PTR // X_PTR = &x
MOVQ y_base+24(FP), Y_PTR // Y_PTR = &y
PXOR SUM, SUM // SUM = 0
PXOR P_SUM, P_SUM // P_SUM = 0
MOVQ n+48(FP), LEN // LEN = n
CMPQ LEN, $0 // if LEN == 0 { return }
JE dotc_end
MOVQ ix+72(FP), INC_X
MOVQ iy+80(FP), INC_Y
LEAQ (X_PTR)(INC_X*8), X_PTR // X_PTR = &(X_PTR[ix])
LEAQ (Y_PTR)(INC_Y*8), Y_PTR // Y_PTR = &(Y_PTR[iy])
MOVQ incX+56(FP), INC_X // INC_X = incX * sizeof(complex64)
SHLQ $3, INC_X
MOVQ incY+64(FP), INC_Y // INC_Y = incY * sizeof(complex64)
SHLQ $3, INC_Y
MOVSS $(-1.0), NEG1
SHUFPS $0, NEG1, NEG1 // { -1, -1, -1, -1 }
MOVQ LEN, TAIL
ANDQ $3, TAIL // TAIL = LEN % 4
SHRQ $2, LEN // LEN = floor( LEN / 4 )
JZ dotc_tail // if LEN == 0 { goto dotc_tail }
MOVUPS NEG1, P_NEG1 // Copy NEG1 for pipelining
LEAQ (INC_X)(INC_X*2), INCx3_X // INCx3_X = INC_X * 3
LEAQ (INC_Y)(INC_Y*2), INCx3_Y // INCx3_Y = INC_Y * 3
dotc_loop: // do {
MOVSD (X_PTR), X3 // X_i = { imag(x[i]), real(x[i]) }
MOVSD (X_PTR)(INC_X*1), X5
MOVSD (X_PTR)(INC_X*2), X7
MOVSD (X_PTR)(INCx3_X*1), X9
// X_(i-1) = { imag(x[i]), imag(x[i]) }
MOVSHDUP_X3_X2
MOVSHDUP_X5_X4
MOVSHDUP_X7_X6
MOVSHDUP_X9_X8
// X_i = { real(x[i]), real(x[i]) }
MOVSLDUP_X3_X3
MOVSLDUP_X5_X5
MOVSLDUP_X7_X7
MOVSLDUP_X9_X9
// X_(i-1) = { -imag(x[i]), -imag(x[i]) }
MULPS NEG1, X2
MULPS P_NEG1, X4
MULPS NEG1, X6
MULPS P_NEG1, X8
// X_j = { imag(y[i]), real(y[i]) }
MOVSD (Y_PTR), X10
MOVSD (Y_PTR)(INC_Y*1), X11
MOVSD (Y_PTR)(INC_Y*2), X12
MOVSD (Y_PTR)(INCx3_Y*1), X13
// X_i = { imag(y[i]) * real(x[i]), real(y[i]) * real(x[i]) }
MULPS X10, X3
MULPS X11, X5
MULPS X12, X7
MULPS X13, X9
// X_j = { real(y[i]), imag(y[i]) }
SHUFPS $0xB1, X10, X10
SHUFPS $0xB1, X11, X11
SHUFPS $0xB1, X12, X12
SHUFPS $0xB1, X13, X13
// X_(i-1) = { real(y[i]) * imag(x[i]), imag(y[i]) * imag(x[i]) }
MULPS X10, X2
MULPS X11, X4
MULPS X12, X6
MULPS X13, X8
// X_i = {
// imag(result[i]): imag(y[i]) * real(x[i]) + real(y[i]) * imag(x[i]),
// real(result[i]): real(y[i]) * real(x[i]) - imag(y[i]) * imag(x[i]) }
ADDSUBPS_X2_X3
ADDSUBPS_X4_X5
ADDSUBPS_X6_X7
ADDSUBPS_X8_X9
// SUM += X_i
ADDPS X3, SUM
ADDPS X5, P_SUM
ADDPS X7, SUM
ADDPS X9, P_SUM
LEAQ (X_PTR)(INC_X*4), X_PTR // X_PTR = &(X_PTR[INC_X*4])
LEAQ (Y_PTR)(INC_Y*4), Y_PTR // Y_PTR = &(Y_PTR[INC_Y*4])
DECQ LEN
JNZ dotc_loop // } while --LEN > 0
ADDPS P_SUM, SUM // SUM = { P_SUM + SUM }
CMPQ TAIL, $0 // if TAIL == 0 { return }
JE dotc_end
dotc_tail: // do {
MOVSD (X_PTR), X3 // X_i = { imag(x[i]), real(x[i]) }
MOVSHDUP_X3_X2 // X_(i-1) = { imag(x[i]), imag(x[i]) }
MOVSLDUP_X3_X3 // X_i = { real(x[i]), real(x[i]) }
MULPS NEG1, X2 // X_(i-1) = { -imag(x[i]), imag(x[i]) }
MOVUPS (Y_PTR), X10 // X_j = { imag(y[i]), real(y[i]) }
MULPS X10, X3 // X_i = { imag(y[i]) * real(x[i]), real(y[i]) * real(x[i]) }
SHUFPS $0x1, X10, X10 // X_j = { real(y[i]), imag(y[i]) }
MULPS X10, X2 // X_(i-1) = { real(y[i]) * imag(x[i]), imag(y[i]) * imag(x[i]) }
// X_i = {
// imag(result[i]): imag(y[i])*real(x[i]) + real(y[i])*imag(x[i]),
// real(result[i]): real(y[i])*real(x[i]) - imag(y[i])*imag(x[i]) }
ADDSUBPS_X2_X3
ADDPS X3, SUM // SUM += X_i
ADDQ INC_X, X_PTR // X_PTR += INC_X
ADDQ INC_Y, Y_PTR // Y_PTR += INC_Y
DECQ TAIL
JNZ dotc_tail // } while --TAIL > 0
dotc_end:
MOVSD SUM, sum+88(FP) // return SUM
RET

View File

@@ -0,0 +1,208 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//+build !noasm,!appengine,!safe
#include "textflag.h"
#define MOVSLDUP_XPTR_IDX_8__X3 LONG $0x1C120FF3; BYTE $0xC6 // MOVSLDUP (SI)(AX*8), X3
#define MOVSLDUP_16_XPTR_IDX_8__X5 LONG $0x6C120FF3; WORD $0x10C6 // MOVSLDUP 16(SI)(AX*8), X5
#define MOVSLDUP_32_XPTR_IDX_8__X7 LONG $0x7C120FF3; WORD $0x20C6 // MOVSLDUP 32(SI)(AX*8), X7
#define MOVSLDUP_48_XPTR_IDX_8__X9 LONG $0x120F44F3; WORD $0xC64C; BYTE $0x30 // MOVSLDUP 48(SI)(AX*8), X9
#define MOVSHDUP_XPTR_IDX_8__X2 LONG $0x14160FF3; BYTE $0xC6 // MOVSHDUP (SI)(AX*8), X2
#define MOVSHDUP_16_XPTR_IDX_8__X4 LONG $0x64160FF3; WORD $0x10C6 // MOVSHDUP 16(SI)(AX*8), X4
#define MOVSHDUP_32_XPTR_IDX_8__X6 LONG $0x74160FF3; WORD $0x20C6 // MOVSHDUP 32(SI)(AX*8), X6
#define MOVSHDUP_48_XPTR_IDX_8__X8 LONG $0x160F44F3; WORD $0xC644; BYTE $0x30 // MOVSHDUP 48(SI)(AX*8), X8
#define MOVSHDUP_X3_X2 LONG $0xD3160FF3 // MOVSHDUP X3, X2
#define MOVSLDUP_X3_X3 LONG $0xDB120FF3 // MOVSLDUP X3, X3
#define ADDSUBPS_X2_X3 LONG $0xDAD00FF2 // ADDSUBPS X2, X3
#define ADDSUBPS_X4_X5 LONG $0xECD00FF2 // ADDSUBPS X4, X5
#define ADDSUBPS_X6_X7 LONG $0xFED00FF2 // ADDSUBPS X6, X7
#define ADDSUBPS_X8_X9 LONG $0xD00F45F2; BYTE $0xC8 // ADDSUBPS X8, X9
#define X_PTR SI
#define Y_PTR DI
#define LEN CX
#define TAIL BX
#define SUM X0
#define P_SUM X1
#define IDX AX
#define I_IDX DX
#define NEG1 X15
#define P_NEG1 X14
// func DotcUnitary(x, y []complex64) (sum complex64)
TEXT ·DotcUnitary(SB), NOSPLIT, $0
MOVQ x_base+0(FP), X_PTR // X_PTR = &x
MOVQ y_base+24(FP), Y_PTR // Y_PTR = &y
PXOR SUM, SUM // SUM = 0
PXOR P_SUM, P_SUM // P_SUM = 0
MOVQ x_len+8(FP), LEN // LEN = min( len(x), len(y) )
CMPQ y_len+32(FP), LEN
CMOVQLE y_len+32(FP), LEN
CMPQ LEN, $0 // if LEN == 0 { return }
JE dotc_end
XORQ IDX, IDX // i = 0
MOVSS $(-1.0), NEG1
SHUFPS $0, NEG1, NEG1 // { -1, -1, -1, -1 }
MOVQ X_PTR, DX
ANDQ $15, DX // DX = &x & 15
JZ dotc_aligned // if DX == 0 { goto dotc_aligned }
MOVSD (X_PTR)(IDX*8), X3 // X_i = { imag(x[i]), real(x[i]) }
MOVSHDUP_X3_X2 // X_(i-1) = { imag(x[i]), imag(x[i]) }
MOVSLDUP_X3_X3 // X_i = { real(x[i]), real(x[i]) }
MOVSD (Y_PTR)(IDX*8), X10 // X_j = { imag(y[i]), real(y[i]) }
MULPS NEG1, X2 // X_(i-1) = { -imag(x[i]), imag(x[i]) }
MULPS X10, X3 // X_i = { imag(y[i]) * real(x[i]), real(y[i]) * real(x[i]) }
SHUFPS $0x1, X10, X10 // X_j = { real(y[i]), imag(y[i]) }
MULPS X10, X2 // X_(i-1) = { real(y[i]) * imag(x[i]), imag(y[i]) * imag(x[i]) }
// X_i = {
// imag(result[i]): imag(y[i])*real(x[i]) + real(y[i])*imag(x[i]),
// real(result[i]): real(y[i])*real(x[i]) - imag(y[i])*imag(x[i]) }
ADDSUBPS_X2_X3
MOVAPS X3, SUM // SUM = X_i
INCQ IDX // IDX++
DECQ LEN // LEN--
JZ dotc_ret // if LEN == 0 { goto dotc_ret }
dotc_aligned:
MOVQ LEN, TAIL
ANDQ $7, TAIL // TAIL = LEN % 8
SHRQ $3, LEN // LEN = floor( LEN / 8 )
JZ dotc_tail // if LEN == 0 { return }
MOVUPS NEG1, P_NEG1 // Copy NEG1 for pipelining
dotc_loop: // do {
MOVSLDUP_XPTR_IDX_8__X3 // X_i = { real(x[i]), real(x[i]), real(x[i+1]), real(x[i+1]) }
MOVSLDUP_16_XPTR_IDX_8__X5
MOVSLDUP_32_XPTR_IDX_8__X7
MOVSLDUP_48_XPTR_IDX_8__X9
MOVSHDUP_XPTR_IDX_8__X2 // X_(i-1) = { imag(x[i]), imag(x[i]), imag(x[i+1]), imag(x[i+1]) }
MOVSHDUP_16_XPTR_IDX_8__X4
MOVSHDUP_32_XPTR_IDX_8__X6
MOVSHDUP_48_XPTR_IDX_8__X8
// X_j = { imag(y[i]), real(y[i]), imag(y[i+1]), real(y[i+1]) }
MOVUPS (Y_PTR)(IDX*8), X10
MOVUPS 16(Y_PTR)(IDX*8), X11
MOVUPS 32(Y_PTR)(IDX*8), X12
MOVUPS 48(Y_PTR)(IDX*8), X13
// X_(i-1) = { -imag(x[i]), -imag(x[i]), -imag(x[i]+1), -imag(x[i]+1) }
MULPS NEG1, X2
MULPS P_NEG1, X4
MULPS NEG1, X6
MULPS P_NEG1, X8
// X_i = { imag(y[i]) * real(x[i]), real(y[i]) * real(x[i]),
// imag(y[i+1]) * real(x[i+1]), real(y[i+1]) * real(x[i+1]) }
MULPS X10, X3
MULPS X11, X5
MULPS X12, X7
MULPS X13, X9
// X_j = { real(y[i]), imag(y[i]), real(y[i+1]), imag(y[i+1]) }
SHUFPS $0xB1, X10, X10
SHUFPS $0xB1, X11, X11
SHUFPS $0xB1, X12, X12
SHUFPS $0xB1, X13, X13
// X_(i-1) = { real(y[i]) * imag(x[i]), imag(y[i]) * imag(x[i]),
// real(y[i+1]) * imag(x[i+1]), imag(y[i+1]) * imag(x[i+1]) }
MULPS X10, X2
MULPS X11, X4
MULPS X12, X6
MULPS X13, X8
// X_i = {
// imag(result[i]): imag(y[i]) * real(x[i]) + real(y[i]) * imag(x[i]),
// real(result[i]): real(y[i]) * real(x[i]) - imag(y[i]) * imag(x[i]),
// imag(result[i+1]): imag(y[i+1]) * real(x[i+1]) + real(y[i+1]) * imag(x[i+1]),
// real(result[i+1]): real(y[i+1]) * real(x[i+1]) - imag(y[i+1]) * imag(x[i+1]),
// }
ADDSUBPS_X2_X3
ADDSUBPS_X4_X5
ADDSUBPS_X6_X7
ADDSUBPS_X8_X9
// SUM += X_i
ADDPS X3, SUM
ADDPS X5, P_SUM
ADDPS X7, SUM
ADDPS X9, P_SUM
ADDQ $8, IDX // IDX += 8
DECQ LEN
JNZ dotc_loop // } while --LEN > 0
ADDPS SUM, P_SUM // P_SUM = { P_SUM[1] + SUM[1], P_SUM[0] + SUM[0] }
XORPS SUM, SUM // SUM = 0
CMPQ TAIL, $0 // if TAIL == 0 { return }
JE dotc_end
dotc_tail:
MOVQ TAIL, LEN
SHRQ $1, LEN // LEN = floor( LEN / 2 )
JZ dotc_tail_one // if LEN == 0 { goto dotc_tail_one }
dotc_tail_two: // do {
MOVSLDUP_XPTR_IDX_8__X3 // X_i = { real(x[i]), real(x[i]), real(x[i+1]), real(x[i+1]) }
MOVSHDUP_XPTR_IDX_8__X2 // X_(i-1) = { imag(x[i]), imag(x[i]), imag(x[i]+1), imag(x[i]+1) }
MOVUPS (Y_PTR)(IDX*8), X10 // X_j = { imag(y[i]), real(y[i]) }
MULPS NEG1, X2 // X_(i-1) = { -imag(x[i]), imag(x[i]) }
MULPS X10, X3 // X_i = { imag(y[i]) * real(x[i]), real(y[i]) * real(x[i]) }
SHUFPS $0xB1, X10, X10 // X_j = { real(y[i]), imag(y[i]) }
MULPS X10, X2 // X_(i-1) = { real(y[i]) * imag(x[i]), imag(y[i]) * imag(x[i]) }
// X_i = {
// imag(result[i]): imag(y[i])*real(x[i]) + real(y[i])*imag(x[i]),
// real(result[i]): real(y[i])*real(x[i]) - imag(y[i])*imag(x[i]) }
ADDSUBPS_X2_X3
ADDPS X3, SUM // SUM += X_i
ADDQ $2, IDX // IDX += 2
DECQ LEN
JNZ dotc_tail_two // } while --LEN > 0
ADDPS SUM, P_SUM // P_SUM = { P_SUM[1] + SUM[1], P_SUM[0] + SUM[0] }
XORPS SUM, SUM // SUM = 0
ANDQ $1, TAIL
JZ dotc_end
dotc_tail_one:
MOVSD (X_PTR)(IDX*8), X3 // X_i = { imag(x[i]), real(x[i]) }
MOVSHDUP_X3_X2 // X_(i-1) = { imag(x[i]), imag(x[i]) }
MOVSLDUP_X3_X3 // X_i = { real(x[i]), real(x[i]) }
MOVSD (Y_PTR)(IDX*8), X10 // X_j = { imag(y[i]), real(y[i]) }
MULPS NEG1, X2 // X_(i-1) = { -imag(x[i]), imag(x[i]) }
MULPS X10, X3 // X_i = { imag(y[i]) * real(x[i]), real(y[i]) * real(x[i]) }
SHUFPS $0x1, X10, X10 // X_j = { real(y[i]), imag(y[i]) }
MULPS X10, X2 // X_(i-1) = { real(y[i]) * imag(x[i]), imag(y[i]) * imag(x[i]) }
// X_i = {
// imag(result[i]): imag(y[i])*real(x[i]) + real(y[i])*imag(x[i]),
// real(result[i]): real(y[i])*real(x[i]) - imag(y[i])*imag(x[i]) }
ADDSUBPS_X2_X3
ADDPS X3, SUM // SUM += X_i
dotc_end:
ADDPS P_SUM, SUM // SUM = { P_SUM[0] + SUM[0] }
MOVHLPS P_SUM, P_SUM // P_SUM = { P_SUM[1], P_SUM[1] }
ADDPS P_SUM, SUM // SUM = { P_SUM[1] + SUM[0] }
dotc_ret:
MOVSD SUM, sum+48(FP) // return SUM
RET

View File

@@ -0,0 +1,148 @@
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//+build !noasm,!appengine,!safe
#include "textflag.h"
#define MOVSHDUP_X3_X2 LONG $0xD3160FF3 // MOVSHDUP X3, X2
#define MOVSHDUP_X5_X4 LONG $0xE5160FF3 // MOVSHDUP X5, X4
#define MOVSHDUP_X7_X6 LONG $0xF7160FF3 // MOVSHDUP X7, X6
#define MOVSHDUP_X9_X8 LONG $0x160F45F3; BYTE $0xC1 // MOVSHDUP X9, X8
#define MOVSLDUP_X3_X3 LONG $0xDB120FF3 // MOVSLDUP X3, X3
#define MOVSLDUP_X5_X5 LONG $0xED120FF3 // MOVSLDUP X5, X5
#define MOVSLDUP_X7_X7 LONG $0xFF120FF3 // MOVSLDUP X7, X7
#define MOVSLDUP_X9_X9 LONG $0x120F45F3; BYTE $0xC9 // MOVSLDUP X9, X9
#define ADDSUBPS_X2_X3 LONG $0xDAD00FF2 // ADDSUBPS X2, X3
#define ADDSUBPS_X4_X5 LONG $0xECD00FF2 // ADDSUBPS X4, X5
#define ADDSUBPS_X6_X7 LONG $0xFED00FF2 // ADDSUBPS X6, X7
#define ADDSUBPS_X8_X9 LONG $0xD00F45F2; BYTE $0xC8 // ADDSUBPS X8, X9
#define X_PTR SI
#define Y_PTR DI
#define LEN CX
#define TAIL BX
#define SUM X0
#define P_SUM X1
#define INC_X R8
#define INCx3_X R9
#define INC_Y R10
#define INCx3_Y R11
// func DotuInc(x, y []complex64, n, incX, incY, ix, iy uintptr) (sum complex64)
TEXT ·DotuInc(SB), NOSPLIT, $0
MOVQ x_base+0(FP), X_PTR // X_PTR = &x
MOVQ y_base+24(FP), Y_PTR // Y_PTR = &y
PXOR SUM, SUM // SUM = 0
PXOR P_SUM, P_SUM // P_SUM = 0
MOVQ n+48(FP), LEN // LEN = n
CMPQ LEN, $0 // if LEN == 0 { return }
JE dotu_end
MOVQ ix+72(FP), INC_X
MOVQ iy+80(FP), INC_Y
LEAQ (X_PTR)(INC_X*8), X_PTR // X_PTR = &(X_PTR[ix])
LEAQ (Y_PTR)(INC_Y*8), Y_PTR // Y_PTR = &(Y_PTR[iy])
MOVQ incX+56(FP), INC_X // INC_X = incX * sizeof(complex64)
SHLQ $3, INC_X
MOVQ incY+64(FP), INC_Y // INC_Y = incY * sizeof(complex64)
SHLQ $3, INC_Y
MOVQ LEN, TAIL
ANDQ $3, TAIL // TAIL = LEN % 4
SHRQ $2, LEN // LEN = floor( LEN / 4 )
JZ dotu_tail // if TAIL == 0 { goto dotu_tail }
LEAQ (INC_X)(INC_X*2), INCx3_X // INCx3_X = INC_X * 3
LEAQ (INC_Y)(INC_Y*2), INCx3_Y // INCx3_Y = INC_Y * 3
dotu_loop: // do {
MOVSD (X_PTR), X3 // X_i = { imag(x[i]), real(x[i]) }
MOVSD (X_PTR)(INC_X*1), X5
MOVSD (X_PTR)(INC_X*2), X7
MOVSD (X_PTR)(INCx3_X*1), X9
// X_(i-1) = { imag(x[i]), imag(x[i]) }
MOVSHDUP_X3_X2
MOVSHDUP_X5_X4
MOVSHDUP_X7_X6
MOVSHDUP_X9_X8
// X_i = { real(x[i]), real(x[i]) }
MOVSLDUP_X3_X3
MOVSLDUP_X5_X5
MOVSLDUP_X7_X7
MOVSLDUP_X9_X9
// X_j = { imag(y[i]), real(y[i]) }
MOVSD (Y_PTR), X10
MOVSD (Y_PTR)(INC_Y*1), X11
MOVSD (Y_PTR)(INC_Y*2), X12
MOVSD (Y_PTR)(INCx3_Y*1), X13
// X_i = { imag(y[i]) * real(x[i]), real(y[i]) * real(x[i]) }
MULPS X10, X3
MULPS X11, X5
MULPS X12, X7
MULPS X13, X9
// X_j = { real(y[i]), imag(y[i]) }
SHUFPS $0xB1, X10, X10
SHUFPS $0xB1, X11, X11
SHUFPS $0xB1, X12, X12
SHUFPS $0xB1, X13, X13
// X_(i-1) = { real(y[i]) * imag(x[i]), imag(y[i]) * imag(x[i]) }
MULPS X10, X2
MULPS X11, X4
MULPS X12, X6
MULPS X13, X8
// X_i = {
// imag(result[i]): imag(y[i]) * real(x[i]) + real(y[i]) * imag(x[i]),
// real(result[i]): real(y[i]) * real(x[i]) - imag(y[i]) * imag(x[i]) }
ADDSUBPS_X2_X3
ADDSUBPS_X4_X5
ADDSUBPS_X6_X7
ADDSUBPS_X8_X9
// SUM += X_i
ADDPS X3, SUM
ADDPS X5, P_SUM
ADDPS X7, SUM
ADDPS X9, P_SUM
LEAQ (X_PTR)(INC_X*4), X_PTR // X_PTR = &(X_PTR[INC_X*4])
LEAQ (Y_PTR)(INC_Y*4), Y_PTR // Y_PTR = &(Y_PTR[INC_Y*4])
DECQ LEN
JNZ dotu_loop // } while --LEN > 0
ADDPS P_SUM, SUM // SUM = { P_SUM + SUM }
CMPQ TAIL, $0 // if TAIL == 0 { return }
JE dotu_end
dotu_tail: // do {
MOVSD (X_PTR), X3 // X_i = { imag(x[i]), real(x[i]) }
MOVSHDUP_X3_X2 // X_(i-1) = { imag(x[i]), imag(x[i]) }
MOVSLDUP_X3_X3 // X_i = { real(x[i]), real(x[i]) }
MOVUPS (Y_PTR), X10 // X_j = { imag(y[i]), real(y[i]) }
MULPS X10, X3 // X_i = { imag(y[i]) * real(x[i]), real(y[i]) * real(x[i]) }
SHUFPS $0x1, X10, X10 // X_j = { real(y[i]), imag(y[i]) }
MULPS X10, X2 // X_(i-1) = { real(y[i]) * imag(x[i]), imag(y[i]) * imag(x[i]) }
// X_i = {
// imag(result[i]): imag(y[i])*real(x[i]) + real(y[i])*imag(x[i]),
// real(result[i]): real(y[i])*real(x[i]) - imag(y[i])*imag(x[i]) }
ADDSUBPS_X2_X3
ADDPS X3, SUM // SUM += X_i
ADDQ INC_X, X_PTR // X_PTR += INC_X
ADDQ INC_Y, Y_PTR // Y_PTR += INC_Y
DECQ TAIL
JNZ dotu_tail // } while --TAIL > 0
dotu_end:
MOVSD SUM, sum+88(FP) // return SUM
RET

View File

@@ -0,0 +1,197 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//+build !noasm,!appengine,!safe
#include "textflag.h"
#define MOVSLDUP_XPTR_IDX_8__X3 LONG $0x1C120FF3; BYTE $0xC6 // MOVSLDUP (SI)(AX*8), X3
#define MOVSLDUP_16_XPTR_IDX_8__X5 LONG $0x6C120FF3; WORD $0x10C6 // MOVSLDUP 16(SI)(AX*8), X5
#define MOVSLDUP_32_XPTR_IDX_8__X7 LONG $0x7C120FF3; WORD $0x20C6 // MOVSLDUP 32(SI)(AX*8), X7
#define MOVSLDUP_48_XPTR_IDX_8__X9 LONG $0x120F44F3; WORD $0xC64C; BYTE $0x30 // MOVSLDUP 48(SI)(AX*8), X9
#define MOVSHDUP_XPTR_IDX_8__X2 LONG $0x14160FF3; BYTE $0xC6 // MOVSHDUP (SI)(AX*8), X2
#define MOVSHDUP_16_XPTR_IDX_8__X4 LONG $0x64160FF3; WORD $0x10C6 // MOVSHDUP 16(SI)(AX*8), X4
#define MOVSHDUP_32_XPTR_IDX_8__X6 LONG $0x74160FF3; WORD $0x20C6 // MOVSHDUP 32(SI)(AX*8), X6
#define MOVSHDUP_48_XPTR_IDX_8__X8 LONG $0x160F44F3; WORD $0xC644; BYTE $0x30 // MOVSHDUP 48(SI)(AX*8), X8
#define MOVSHDUP_X3_X2 LONG $0xD3160FF3 // MOVSHDUP X3, X2
#define MOVSLDUP_X3_X3 LONG $0xDB120FF3 // MOVSLDUP X3, X3
#define ADDSUBPS_X2_X3 LONG $0xDAD00FF2 // ADDSUBPS X2, X3
#define ADDSUBPS_X4_X5 LONG $0xECD00FF2 // ADDSUBPS X4, X5
#define ADDSUBPS_X6_X7 LONG $0xFED00FF2 // ADDSUBPS X6, X7
#define ADDSUBPS_X8_X9 LONG $0xD00F45F2; BYTE $0xC8 // ADDSUBPS X8, X9
#define X_PTR SI
#define Y_PTR DI
#define LEN CX
#define TAIL BX
#define SUM X0
#define P_SUM X1
#define IDX AX
#define I_IDX DX
#define NEG1 X15
#define P_NEG1 X14
// func DotuUnitary(x, y []complex64) (sum complex64)
TEXT ·DotuUnitary(SB), NOSPLIT, $0
MOVQ x_base+0(FP), X_PTR // X_PTR = &x
MOVQ y_base+24(FP), Y_PTR // Y_PTR = &y
PXOR SUM, SUM // SUM = 0
PXOR P_SUM, P_SUM // P_SUM = 0
MOVQ x_len+8(FP), LEN // LEN = min( len(x), len(y) )
CMPQ y_len+32(FP), LEN
CMOVQLE y_len+32(FP), LEN
CMPQ LEN, $0 // if LEN == 0 { return }
JE dotu_end
XORQ IDX, IDX // IDX = 0
MOVQ X_PTR, DX
ANDQ $15, DX // DX = &x & 15
JZ dotu_aligned // if DX == 0 { goto dotu_aligned }
MOVSD (X_PTR)(IDX*8), X3 // X_i = { imag(x[i]), real(x[i]) }
MOVSHDUP_X3_X2 // X_(i-1) = { imag(x[i]), imag(x[i]) }
MOVSLDUP_X3_X3 // X_i = { real(x[i]), real(x[i]) }
MOVSD (Y_PTR)(IDX*8), X10 // X_j = { imag(y[i]), real(y[i]) }
MULPS X10, X3 // X_i = { imag(y[i]) * real(x[i]), real(y[i]) * real(x[i]) }
SHUFPS $0x1, X10, X10 // X_j = { real(y[i]), imag(y[i]) }
MULPS X10, X2 // X_(i-1) = { real(y[i]) * imag(x[i]), imag(y[i]) * imag(x[i]) }
// X_i = {
// imag(result[i]): imag(y[i])*real(x[i]) + real(y[i])*imag(x[i]),
// real(result[i]): real(y[i])*real(x[i]) - imag(y[i])*imag(x[i]) }
ADDSUBPS_X2_X3
MOVAPS X3, SUM // SUM = X_i
INCQ IDX // IDX++
DECQ LEN // LEN--
JZ dotu_end // if LEN == 0 { goto dotu_end }
dotu_aligned:
MOVQ LEN, TAIL
ANDQ $7, TAIL // TAIL = LEN % 8
SHRQ $3, LEN // LEN = floor( LEN / 8 )
JZ dotu_tail // if LEN == 0 { goto dotu_tail }
PXOR P_SUM, P_SUM
dotu_loop: // do {
MOVSLDUP_XPTR_IDX_8__X3 // X_i = { real(x[i]), real(x[i]), real(x[i+1]), real(x[i+1]) }
MOVSLDUP_16_XPTR_IDX_8__X5
MOVSLDUP_32_XPTR_IDX_8__X7
MOVSLDUP_48_XPTR_IDX_8__X9
MOVSHDUP_XPTR_IDX_8__X2 // X_(i-1) = { imag(x[i]), imag(x[i]), imag(x[i]+1), imag(x[i]+1) }
MOVSHDUP_16_XPTR_IDX_8__X4
MOVSHDUP_32_XPTR_IDX_8__X6
MOVSHDUP_48_XPTR_IDX_8__X8
// X_j = { imag(y[i]), real(y[i]), imag(y[i+1]), real(y[i+1]) }
MOVUPS (Y_PTR)(IDX*8), X10
MOVUPS 16(Y_PTR)(IDX*8), X11
MOVUPS 32(Y_PTR)(IDX*8), X12
MOVUPS 48(Y_PTR)(IDX*8), X13
// X_i = { imag(y[i]) * real(x[i]), real(y[i]) * real(x[i]),
// imag(y[i+1]) * real(x[i+1]), real(y[i+1]) * real(x[i+1]) }
MULPS X10, X3
MULPS X11, X5
MULPS X12, X7
MULPS X13, X9
// X_j = { real(y[i]), imag(y[i]), real(y[i+1]), imag(y[i+1]) }
SHUFPS $0xB1, X10, X10
SHUFPS $0xB1, X11, X11
SHUFPS $0xB1, X12, X12
SHUFPS $0xB1, X13, X13
// X_(i-1) = { real(y[i]) * imag(x[i]), imag(y[i]) * imag(x[i]),
// real(y[i+1]) * imag(x[i+1]), imag(y[i+1]) * imag(x[i+1]) }
MULPS X10, X2
MULPS X11, X4
MULPS X12, X6
MULPS X13, X8
// X_i = {
// imag(result[i]): imag(y[i]) * real(x[i]) + real(y[i]) * imag(x[i]),
// real(result[i]): real(y[i]) * real(x[i]) - imag(y[i]) * imag(x[i]),
// imag(result[i+1]): imag(y[i+1]) * real(x[i+1]) + real(y[i+1]) * imag(x[i+1]),
// real(result[i+1]): real(y[i+1]) * real(x[i+1]) - imag(y[i+1]) * imag(x[i+1]),
// }
ADDSUBPS_X2_X3
ADDSUBPS_X4_X5
ADDSUBPS_X6_X7
ADDSUBPS_X8_X9
// SUM += X_i
ADDPS X3, SUM
ADDPS X5, P_SUM
ADDPS X7, SUM
ADDPS X9, P_SUM
ADDQ $8, IDX // IDX += 8
DECQ LEN
JNZ dotu_loop // } while --LEN > 0
ADDPS SUM, P_SUM // P_SUM = { P_SUM[1] + SUM[1], P_SUM[0] + SUM[0] }
XORPS SUM, SUM // SUM = 0
CMPQ TAIL, $0 // if TAIL == 0 { return }
JE dotu_end
dotu_tail:
MOVQ TAIL, LEN
SHRQ $1, LEN // LEN = floor( LEN / 2 )
JZ dotu_tail_one // if LEN == 0 { goto dotc_tail_one }
dotu_tail_two: // do {
MOVSLDUP_XPTR_IDX_8__X3 // X_i = { real(x[i]), real(x[i]), real(x[i+1]), real(x[i+1]) }
MOVSHDUP_XPTR_IDX_8__X2 // X_(i-1) = { imag(x[i]), imag(x[i]), imag(x[i]+1), imag(x[i]+1) }
MOVUPS (Y_PTR)(IDX*8), X10 // X_j = { imag(y[i]), real(y[i]) }
MULPS X10, X3 // X_i = { imag(y[i]) * real(x[i]), real(y[i]) * real(x[i]) }
SHUFPS $0xB1, X10, X10 // X_j = { real(y[i]), imag(y[i]) }
MULPS X10, X2 // X_(i-1) = { real(y[i]) * imag(x[i]), imag(y[i]) * imag(x[i]) }
// X_i = {
// imag(result[i]): imag(y[i])*real(x[i]) + real(y[i])*imag(x[i]),
// real(result[i]): real(y[i])*real(x[i]) - imag(y[i])*imag(x[i]) }
ADDSUBPS_X2_X3
ADDPS X3, SUM // SUM += X_i
ADDQ $2, IDX // IDX += 2
DECQ LEN
JNZ dotu_tail_two // } while --LEN > 0
ADDPS SUM, P_SUM // P_SUM = { P_SUM[1] + SUM[1], P_SUM[0] + SUM[0] }
XORPS SUM, SUM // SUM = 0
ANDQ $1, TAIL
JZ dotu_end
dotu_tail_one:
MOVSD (X_PTR)(IDX*8), X3 // X_i = { imag(x[i]), real(x[i]) }
MOVSHDUP_X3_X2 // X_(i-1) = { imag(x[i]), imag(x[i]) }
MOVSLDUP_X3_X3 // X_i = { real(x[i]), real(x[i]) }
MOVSD (Y_PTR)(IDX*8), X10 // X_j = { imag(y[i]), real(y[i]) }
MULPS X10, X3 // X_i = { imag(y[i]) * real(x[i]), real(y[i]) * real(x[i]) }
SHUFPS $0x1, X10, X10 // X_j = { real(y[i]), imag(y[i]) }
MULPS X10, X2 // X_(i-1) = { real(y[i]) * imag(x[i]), imag(y[i]) * imag(x[i]) }
// X_i = {
// imag(result[i]): imag(y[i])*real(x[i]) + real(y[i])*imag(x[i]),
// real(result[i]): real(y[i])*real(x[i]) - imag(y[i])*imag(x[i]) }
ADDSUBPS_X2_X3
ADDPS X3, SUM // SUM += X_i
dotu_end:
ADDPS P_SUM, SUM // SUM = { P_SUM[0] + SUM[0] }
MOVHLPS P_SUM, P_SUM // P_SUM = { P_SUM[1], P_SUM[1] }
ADDPS P_SUM, SUM // SUM = { P_SUM[1] + SUM[0] }
dotu_ret:
MOVSD SUM, sum+48(FP) // return SUM
RET

79
vendor/gonum.org/v1/gonum/internal/asm/c64/scal.go generated vendored Normal file
View File

@@ -0,0 +1,79 @@
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package c64
// ScalUnitary is
// for i := range x {
// x[i] *= alpha
// }
func ScalUnitary(alpha complex64, x []complex64) {
for i := range x {
x[i] *= alpha
}
}
// ScalUnitaryTo is
// for i, v := range x {
// dst[i] = alpha * v
// }
func ScalUnitaryTo(dst []complex64, alpha complex64, x []complex64) {
for i, v := range x {
dst[i] = alpha * v
}
}
// ScalInc is
// var ix uintptr
// for i := 0; i < int(n); i++ {
// x[ix] *= alpha
// ix += incX
// }
func ScalInc(alpha complex64, x []complex64, n, incX uintptr) {
var ix uintptr
for i := 0; i < int(n); i++ {
x[ix] *= alpha
ix += incX
}
}
// ScalIncTo is
// var idst, ix uintptr
// for i := 0; i < int(n); i++ {
// dst[idst] = alpha * x[ix]
// ix += incX
// idst += incDst
// }
func ScalIncTo(dst []complex64, incDst uintptr, alpha complex64, x []complex64, n, incX uintptr) {
var idst, ix uintptr
for i := 0; i < int(n); i++ {
dst[idst] = alpha * x[ix]
ix += incX
idst += incDst
}
}
// SscalUnitary is
// for i, v := range x {
// x[i] = complex(real(v)*alpha, imag(v)*alpha)
// }
func SscalUnitary(alpha float32, x []complex64) {
for i, v := range x {
x[i] = complex(real(v)*alpha, imag(v)*alpha)
}
}
// SscalInc is
// var ix uintptr
// for i := 0; i < int(n); i++ {
// x[ix] = complex(real(x[ix])*alpha, imag(x[ix])*alpha)
// ix += inc
// }
func SscalInc(alpha float32, x []complex64, n, inc uintptr) {
var ix uintptr
for i := 0; i < int(n); i++ {
x[ix] = complex(real(x[ix])*alpha, imag(x[ix])*alpha)
ix += inc
}
}

View File

@@ -0,0 +1,68 @@
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !noasm,!appengine,!safe
package c64
// AxpyUnitary is
// for i, v := range x {
// y[i] += alpha * v
// }
func AxpyUnitary(alpha complex64, x, y []complex64)
// AxpyUnitaryTo is
// for i, v := range x {
// dst[i] = alpha*v + y[i]
// }
func AxpyUnitaryTo(dst []complex64, alpha complex64, x, y []complex64)
// AxpyInc is
// for i := 0; i < int(n); i++ {
// y[iy] += alpha * x[ix]
// ix += incX
// iy += incY
// }
func AxpyInc(alpha complex64, x, y []complex64, n, incX, incY, ix, iy uintptr)
// AxpyIncTo is
// for i := 0; i < int(n); i++ {
// dst[idst] = alpha*x[ix] + y[iy]
// ix += incX
// iy += incY
// idst += incDst
// }
func AxpyIncTo(dst []complex64, incDst, idst uintptr, alpha complex64, x, y []complex64, n, incX, incY, ix, iy uintptr)
// DotcUnitary is
// for i, v := range x {
// sum += y[i] * conj(v)
// }
// return sum
func DotcUnitary(x, y []complex64) (sum complex64)
// DotcInc is
// for i := 0; i < int(n); i++ {
// sum += y[iy] * conj(x[ix])
// ix += incX
// iy += incY
// }
// return sum
func DotcInc(x, y []complex64, n, incX, incY, ix, iy uintptr) (sum complex64)
// DotuUnitary is
// for i, v := range x {
// sum += y[i] * v
// }
// return sum
func DotuUnitary(x, y []complex64) (sum complex64)
// DotuInc is
// for i := 0; i < int(n); i++ {
// sum += y[iy] * x[ix]
// ix += incX
// iy += incY
// }
// return sum
func DotuInc(x, y []complex64, n, incX, incY, ix, iy uintptr) (sum complex64)

View File

@@ -0,0 +1,113 @@
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64 noasm appengine safe
package c64
// AxpyUnitary is
// for i, v := range x {
// y[i] += alpha * v
// }
func AxpyUnitary(alpha complex64, x, y []complex64) {
for i, v := range x {
y[i] += alpha * v
}
}
// AxpyUnitaryTo is
// for i, v := range x {
// dst[i] = alpha*v + y[i]
// }
func AxpyUnitaryTo(dst []complex64, alpha complex64, x, y []complex64) {
for i, v := range x {
dst[i] = alpha*v + y[i]
}
}
// AxpyInc is
// for i := 0; i < int(n); i++ {
// y[iy] += alpha * x[ix]
// ix += incX
// iy += incY
// }
func AxpyInc(alpha complex64, x, y []complex64, n, incX, incY, ix, iy uintptr) {
for i := 0; i < int(n); i++ {
y[iy] += alpha * x[ix]
ix += incX
iy += incY
}
}
// AxpyIncTo is
// for i := 0; i < int(n); i++ {
// dst[idst] = alpha*x[ix] + y[iy]
// ix += incX
// iy += incY
// idst += incDst
// }
func AxpyIncTo(dst []complex64, incDst, idst uintptr, alpha complex64, x, y []complex64, n, incX, incY, ix, iy uintptr) {
for i := 0; i < int(n); i++ {
dst[idst] = alpha*x[ix] + y[iy]
ix += incX
iy += incY
idst += incDst
}
}
// DotcUnitary is
// for i, v := range x {
// sum += y[i] * conj(v)
// }
// return sum
func DotcUnitary(x, y []complex64) (sum complex64) {
for i, v := range x {
sum += y[i] * conj(v)
}
return sum
}
// DotcInc is
// for i := 0; i < int(n); i++ {
// sum += y[iy] * conj(x[ix])
// ix += incX
// iy += incY
// }
// return sum
func DotcInc(x, y []complex64, n, incX, incY, ix, iy uintptr) (sum complex64) {
for i := 0; i < int(n); i++ {
sum += y[iy] * conj(x[ix])
ix += incX
iy += incY
}
return sum
}
// DotuUnitary is
// for i, v := range x {
// sum += y[i] * v
// }
// return sum
func DotuUnitary(x, y []complex64) (sum complex64) {
for i, v := range x {
sum += y[i] * v
}
return sum
}
// DotuInc is
// for i := 0; i < int(n); i++ {
// sum += y[iy] * x[ix]
// ix += incX
// iy += incY
// }
// return sum
func DotuInc(x, y []complex64, n, incX, incY, ix, iy uintptr) (sum complex64) {
for i := 0; i < int(n); i++ {
sum += y[iy] * x[ix]
ix += incX
iy += incY
}
return sum
}