1. update clientset, deepcopy using code-generator

2. add a dummy file tools.go to force "go mod vendor" to see
code-generator as dependencies
3. add a script to update CRD
4. add a README to document CRD updating steps
run go mod tidy
update README
This commit is contained in:
xiangqian
2019-12-03 01:22:21 -08:00
parent 90533183e4
commit 728e29aa7e
1128 changed files with 167705 additions and 5135 deletions

1
vendor/gonum.org/v1/gonum/graph/.gitignore generated vendored Normal file
View File

@@ -0,0 +1 @@
test.out

3
vendor/gonum.org/v1/gonum/graph/README.md generated vendored Normal file
View File

@@ -0,0 +1,3 @@
# Gonum graph [![GoDoc](https://godoc.org/gonum.org/v1/gonum/graph?status.svg)](https://godoc.org/gonum.org/v1/gonum/graph)
This is a generalized graph package for the Go language.

9
vendor/gonum.org/v1/gonum/graph/doc.go generated vendored Normal file
View File

@@ -0,0 +1,9 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package graph defines graph interfaces.
//
// Routines to test contract compliance by user implemented graph types
// are available in gonum.org/v1/gonum/graph/testgraph.
package graph // import "gonum.org/v1/gonum/graph"

282
vendor/gonum.org/v1/gonum/graph/graph.go generated vendored Normal file
View File

@@ -0,0 +1,282 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package graph
// Node is a graph node. It returns a graph-unique integer ID.
type Node interface {
ID() int64
}
// Edge is a graph edge. In directed graphs, the direction of the
// edge is given from -> to, otherwise the edge is semantically
// unordered.
type Edge interface {
// From returns the from node of the edge.
From() Node
// To returns the to node of the edge.
To() Node
// ReversedEdge returns an edge that has
// the end points of the receiver swapped.
ReversedEdge() Edge
}
// WeightedEdge is a weighted graph edge. In directed graphs, the direction
// of the edge is given from -> to, otherwise the edge is semantically
// unordered.
type WeightedEdge interface {
Edge
Weight() float64
}
// Graph is a generalized graph.
type Graph interface {
// Node returns the node with the given ID if it exists
// in the graph, and nil otherwise.
Node(id int64) Node
// Nodes returns all the nodes in the graph.
//
// Nodes must not return nil.
Nodes() Nodes
// From returns all nodes that can be reached directly
// from the node with the given ID.
//
// From must not return nil.
From(id int64) Nodes
// HasEdgeBetween returns whether an edge exists between
// nodes with IDs xid and yid without considering direction.
HasEdgeBetween(xid, yid int64) bool
// Edge returns the edge from u to v, with IDs uid and vid,
// if such an edge exists and nil otherwise. The node v
// must be directly reachable from u as defined by the
// From method.
Edge(uid, vid int64) Edge
}
// Weighted is a weighted graph.
type Weighted interface {
Graph
// WeightedEdge returns the weighted edge from u to v
// with IDs uid and vid if such an edge exists and
// nil otherwise. The node v must be directly
// reachable from u as defined by the From method.
WeightedEdge(uid, vid int64) WeightedEdge
// Weight returns the weight for the edge between
// x and y with IDs xid and yid if Edge(xid, yid)
// returns a non-nil Edge.
// If x and y are the same node or there is no
// joining edge between the two nodes the weight
// value returned is implementation dependent.
// Weight returns true if an edge exists between
// x and y or if x and y have the same ID, false
// otherwise.
Weight(xid, yid int64) (w float64, ok bool)
}
// Undirected is an undirected graph.
type Undirected interface {
Graph
// EdgeBetween returns the edge between nodes x and y
// with IDs xid and yid.
EdgeBetween(xid, yid int64) Edge
}
// WeightedUndirected is a weighted undirected graph.
type WeightedUndirected interface {
Weighted
// WeightedEdgeBetween returns the edge between nodes
// x and y with IDs xid and yid.
WeightedEdgeBetween(xid, yid int64) WeightedEdge
}
// Directed is a directed graph.
type Directed interface {
Graph
// HasEdgeFromTo returns whether an edge exists
// in the graph from u to v with IDs uid and vid.
HasEdgeFromTo(uid, vid int64) bool
// To returns all nodes that can reach directly
// to the node with the given ID.
//
// To must not return nil.
To(id int64) Nodes
}
// WeightedDirected is a weighted directed graph.
type WeightedDirected interface {
Weighted
// HasEdgeFromTo returns whether an edge exists
// in the graph from u to v with the IDs uid and
// vid.
HasEdgeFromTo(uid, vid int64) bool
// To returns all nodes that can reach directly
// to the node with the given ID.
//
// To must not return nil.
To(id int64) Nodes
}
// NodeAdder is an interface for adding arbitrary nodes to a graph.
type NodeAdder interface {
// NewNode returns a new Node with a unique
// arbitrary ID.
NewNode() Node
// AddNode adds a node to the graph. AddNode panics if
// the added node ID matches an existing node ID.
AddNode(Node)
}
// NodeRemover is an interface for removing nodes from a graph.
type NodeRemover interface {
// RemoveNode removes the node with the given ID
// from the graph, as well as any edges attached
// to it. If the node is not in the graph it is
// a no-op.
RemoveNode(id int64)
}
// EdgeAdder is an interface for adding edges to a graph.
type EdgeAdder interface {
// NewEdge returns a new Edge from the source to the destination node.
NewEdge(from, to Node) Edge
// SetEdge adds an edge from one node to another.
// If the graph supports node addition the nodes
// will be added if they do not exist, otherwise
// SetEdge will panic.
// The behavior of an EdgeAdder when the IDs
// returned by e.From() and e.To() are equal is
// implementation-dependent.
// Whether e, e.From() and e.To() are stored
// within the graph is implementation dependent.
SetEdge(e Edge)
}
// WeightedEdgeAdder is an interface for adding edges to a graph.
type WeightedEdgeAdder interface {
// NewWeightedEdge returns a new WeightedEdge from
// the source to the destination node.
NewWeightedEdge(from, to Node, weight float64) WeightedEdge
// SetWeightedEdge adds an edge from one node to
// another. If the graph supports node addition
// the nodes will be added if they do not exist,
// otherwise SetWeightedEdge will panic.
// The behavior of a WeightedEdgeAdder when the IDs
// returned by e.From() and e.To() are equal is
// implementation-dependent.
// Whether e, e.From() and e.To() are stored
// within the graph is implementation dependent.
SetWeightedEdge(e WeightedEdge)
}
// EdgeRemover is an interface for removing nodes from a graph.
type EdgeRemover interface {
// RemoveEdge removes the edge with the given end
// IDs, leaving the terminal nodes. If the edge
// does not exist it is a no-op.
RemoveEdge(fid, tid int64)
}
// Builder is a graph that can have nodes and edges added.
type Builder interface {
NodeAdder
EdgeAdder
}
// WeightedBuilder is a graph that can have nodes and weighted edges added.
type WeightedBuilder interface {
NodeAdder
WeightedEdgeAdder
}
// UndirectedBuilder is an undirected graph builder.
type UndirectedBuilder interface {
Undirected
Builder
}
// UndirectedWeightedBuilder is an undirected weighted graph builder.
type UndirectedWeightedBuilder interface {
Undirected
WeightedBuilder
}
// DirectedBuilder is a directed graph builder.
type DirectedBuilder interface {
Directed
Builder
}
// DirectedWeightedBuilder is a directed weighted graph builder.
type DirectedWeightedBuilder interface {
Directed
WeightedBuilder
}
// Copy copies nodes and edges as undirected edges from the source to the destination
// without first clearing the destination. Copy will panic if a node ID in the source
// graph matches a node ID in the destination.
//
// If the source is undirected and the destination is directed both directions will
// be present in the destination after the copy is complete.
func Copy(dst Builder, src Graph) {
nodes := src.Nodes()
for nodes.Next() {
dst.AddNode(nodes.Node())
}
nodes.Reset()
for nodes.Next() {
u := nodes.Node()
uid := u.ID()
to := src.From(uid)
for to.Next() {
v := to.Node()
dst.SetEdge(src.Edge(uid, v.ID()))
}
}
}
// CopyWeighted copies nodes and edges as undirected edges from the source to the destination
// without first clearing the destination. Copy will panic if a node ID in the source
// graph matches a node ID in the destination.
//
// If the source is undirected and the destination is directed both directions will
// be present in the destination after the copy is complete.
//
// If the source is a directed graph, the destination is undirected, and a fundamental
// cycle exists with two nodes where the edge weights differ, the resulting destination
// graph's edge weight between those nodes is undefined. If there is a defined function
// to resolve such conflicts, an UndirectWeighted may be used to do this.
func CopyWeighted(dst WeightedBuilder, src Weighted) {
nodes := src.Nodes()
for nodes.Next() {
dst.AddNode(nodes.Node())
}
nodes.Reset()
for nodes.Next() {
u := nodes.Node()
uid := u.ID()
to := src.From(uid)
for to.Next() {
v := to.Node()
dst.SetWeightedEdge(src.WeightedEdge(uid, v.ID()))
}
}
}

View File

@@ -0,0 +1,6 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package linear provides common linear data structures.
package linear // import "gonum.org/v1/gonum/graph/internal/linear"

View File

@@ -0,0 +1,73 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package linear
import (
"gonum.org/v1/gonum/graph"
)
// NodeStack implements a LIFO stack of graph.Node.
type NodeStack []graph.Node
// Len returns the number of graph.Nodes on the stack.
func (s *NodeStack) Len() int { return len(*s) }
// Pop returns the last graph.Node on the stack and removes it
// from the stack.
func (s *NodeStack) Pop() graph.Node {
v := *s
v, n := v[:len(v)-1], v[len(v)-1]
*s = v
return n
}
// Push adds the node n to the stack at the last position.
func (s *NodeStack) Push(n graph.Node) { *s = append(*s, n) }
// NodeQueue implements a FIFO queue.
type NodeQueue struct {
head int
data []graph.Node
}
// Len returns the number of graph.Nodes in the queue.
func (q *NodeQueue) Len() int { return len(q.data) - q.head }
// Enqueue adds the node n to the back of the queue.
func (q *NodeQueue) Enqueue(n graph.Node) {
if len(q.data) == cap(q.data) && q.head > 0 {
l := q.Len()
copy(q.data, q.data[q.head:])
q.head = 0
q.data = append(q.data[:l], n)
} else {
q.data = append(q.data, n)
}
}
// Dequeue returns the graph.Node at the front of the queue and
// removes it from the queue.
func (q *NodeQueue) Dequeue() graph.Node {
if q.Len() == 0 {
panic("queue: empty queue")
}
var n graph.Node
n, q.data[q.head] = q.data[q.head], nil
q.head++
if q.Len() == 0 {
q.head = 0
q.data = q.data[:0]
}
return n
}
// Reset clears the queue for reuse.
func (q *NodeQueue) Reset() {
q.head = 0
q.data = q.data[:0]
}

View File

@@ -0,0 +1,6 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ordered provides common sort ordering types.
package ordered // import "gonum.org/v1/gonum/graph/internal/ordered"

View File

@@ -0,0 +1,93 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ordered
import "gonum.org/v1/gonum/graph"
// ByID implements the sort.Interface sorting a slice of graph.Node
// by ID.
type ByID []graph.Node
func (n ByID) Len() int { return len(n) }
func (n ByID) Less(i, j int) bool { return n[i].ID() < n[j].ID() }
func (n ByID) Swap(i, j int) { n[i], n[j] = n[j], n[i] }
// BySliceValues implements the sort.Interface sorting a slice of
// []int64 lexically by the values of the []int64.
type BySliceValues [][]int64
func (c BySliceValues) Len() int { return len(c) }
func (c BySliceValues) Less(i, j int) bool {
a, b := c[i], c[j]
l := len(a)
if len(b) < l {
l = len(b)
}
for k, v := range a[:l] {
if v < b[k] {
return true
}
if v > b[k] {
return false
}
}
return len(a) < len(b)
}
func (c BySliceValues) Swap(i, j int) { c[i], c[j] = c[j], c[i] }
// BySliceIDs implements the sort.Interface sorting a slice of
// []graph.Node lexically by the IDs of the []graph.Node.
type BySliceIDs [][]graph.Node
func (c BySliceIDs) Len() int { return len(c) }
func (c BySliceIDs) Less(i, j int) bool {
a, b := c[i], c[j]
l := len(a)
if len(b) < l {
l = len(b)
}
for k, v := range a[:l] {
if v.ID() < b[k].ID() {
return true
}
if v.ID() > b[k].ID() {
return false
}
}
return len(a) < len(b)
}
func (c BySliceIDs) Swap(i, j int) { c[i], c[j] = c[j], c[i] }
// Int64s implements the sort.Interface sorting a slice of
// int64.
type Int64s []int64
func (s Int64s) Len() int { return len(s) }
func (s Int64s) Less(i, j int) bool { return s[i] < s[j] }
func (s Int64s) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// Reverse reverses the order of nodes.
func Reverse(nodes []graph.Node) {
for i, j := 0, len(nodes)-1; i < j; i, j = i+1, j-1 {
nodes[i], nodes[j] = nodes[j], nodes[i]
}
}
// LinesByIDs implements the sort.Interface sorting a slice of graph.LinesByIDs
// lexically by the From IDs, then by the To IDs, finally by the Line IDs.
type LinesByIDs []graph.Line
func (n LinesByIDs) Len() int { return len(n) }
func (n LinesByIDs) Less(i, j int) bool {
a, b := n[i], n[j]
if a.From().ID() != b.From().ID() {
return a.From().ID() < b.From().ID()
}
if a.To().ID() != b.To().ID() {
return a.To().ID() < b.To().ID()
}
return n[i].ID() < n[j].ID()
}
func (n LinesByIDs) Swap(i, j int) { n[i], n[j] = n[j], n[i] }

6
vendor/gonum.org/v1/gonum/graph/internal/set/doc.go generated vendored Normal file
View File

@@ -0,0 +1,6 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package set provides integer and graph.Node sets.
package set // import "gonum.org/v1/gonum/graph/internal/set"

36
vendor/gonum.org/v1/gonum/graph/internal/set/same.go generated vendored Normal file
View File

@@ -0,0 +1,36 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine,!safe
package set
import "unsafe"
// same determines whether two sets are backed by the same store. In the
// current implementation using hash maps it makes use of the fact that
// hash maps are passed as a pointer to a runtime Hmap struct. A map is
// not seen by the runtime as a pointer though, so we use unsafe to get
// the maps' pointer values to compare.
func same(a, b Nodes) bool {
return *(*uintptr)(unsafe.Pointer(&a)) == *(*uintptr)(unsafe.Pointer(&b))
}
// intsSame determines whether two sets are backed by the same store. In the
// current implementation using hash maps it makes use of the fact that
// hash maps are passed as a pointer to a runtime Hmap struct. A map is
// not seen by the runtime as a pointer though, so we use unsafe to get
// the maps' pointer values to compare.
func intsSame(a, b Ints) bool {
return *(*uintptr)(unsafe.Pointer(&a)) == *(*uintptr)(unsafe.Pointer(&b))
}
// int64sSame determines whether two sets are backed by the same store. In the
// current implementation using hash maps it makes use of the fact that
// hash maps are passed as a pointer to a runtime Hmap struct. A map is
// not seen by the runtime as a pointer though, so we use unsafe to get
// the maps' pointer values to compare.
func int64sSame(a, b Int64s) bool {
return *(*uintptr)(unsafe.Pointer(&a)) == *(*uintptr)(unsafe.Pointer(&b))
}

View File

@@ -0,0 +1,36 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build appengine safe
package set
import "reflect"
// same determines whether two sets are backed by the same store. In the
// current implementation using hash maps it makes use of the fact that
// hash maps are passed as a pointer to a runtime Hmap struct. A map is
// not seen by the runtime as a pointer though, so we use reflect to get
// the maps' pointer values to compare.
func same(a, b Nodes) bool {
return reflect.ValueOf(a).Pointer() == reflect.ValueOf(b).Pointer()
}
// intsSame determines whether two sets are backed by the same store. In the
// current implementation using hash maps it makes use of the fact that
// hash maps are passed as a pointer to a runtime Hmap struct. A map is
// not seen by the runtime as a pointer though, so we use reflect to get
// the maps' pointer values to compare.
func intsSame(a, b Ints) bool {
return reflect.ValueOf(a).Pointer() == reflect.ValueOf(b).Pointer()
}
// int64sSame determines whether two sets are backed by the same store. In the
// current implementation using hash maps it makes use of the fact that
// hash maps are passed as a pointer to a runtime Hmap struct. A map is
// not seen by the runtime as a pointer though, so we use reflect to get
// the maps' pointer values to compare.
func int64sSame(a, b Int64s) bool {
return reflect.ValueOf(a).Pointer() == reflect.ValueOf(b).Pointer()
}

228
vendor/gonum.org/v1/gonum/graph/internal/set/set.go generated vendored Normal file
View File

@@ -0,0 +1,228 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package set
import "gonum.org/v1/gonum/graph"
// Ints is a set of int identifiers.
type Ints map[int]struct{}
// The simple accessor methods for Ints are provided to allow ease of
// implementation change should the need arise.
// Add inserts an element into the set.
func (s Ints) Add(e int) {
s[e] = struct{}{}
}
// Has reports the existence of the element in the set.
func (s Ints) Has(e int) bool {
_, ok := s[e]
return ok
}
// Remove deletes the specified element from the set.
func (s Ints) Remove(e int) {
delete(s, e)
}
// Count reports the number of elements stored in the set.
func (s Ints) Count() int {
return len(s)
}
// IntsEqual reports set equality between the parameters. Sets are equal if
// and only if they have the same elements.
func IntsEqual(a, b Ints) bool {
if intsSame(a, b) {
return true
}
if len(a) != len(b) {
return false
}
for e := range a {
if _, ok := b[e]; !ok {
return false
}
}
return true
}
// Int64s is a set of int64 identifiers.
type Int64s map[int64]struct{}
// The simple accessor methods for Ints are provided to allow ease of
// implementation change should the need arise.
// Add inserts an element into the set.
func (s Int64s) Add(e int64) {
s[e] = struct{}{}
}
// Has reports the existence of the element in the set.
func (s Int64s) Has(e int64) bool {
_, ok := s[e]
return ok
}
// Remove deletes the specified element from the set.
func (s Int64s) Remove(e int64) {
delete(s, e)
}
// Count reports the number of elements stored in the set.
func (s Int64s) Count() int {
return len(s)
}
// Int64sEqual reports set equality between the parameters. Sets are equal if
// and only if they have the same elements.
func Int64sEqual(a, b Int64s) bool {
if int64sSame(a, b) {
return true
}
if len(a) != len(b) {
return false
}
for e := range a {
if _, ok := b[e]; !ok {
return false
}
}
return true
}
// Nodes is a set of nodes keyed in their integer identifiers.
type Nodes map[int64]graph.Node
// NewNodes returns a new Nodes.
func NewNodes() Nodes {
return make(Nodes)
}
// NewNodes returns a new Nodes with the given size hint, n.
func NewNodesSize(n int) Nodes {
return make(Nodes, n)
}
// The simple accessor methods for Nodes are provided to allow ease of
// implementation change should the need arise.
// Add inserts an element into the set.
func (s Nodes) Add(n graph.Node) {
s[n.ID()] = n
}
// Remove deletes the specified element from the set.
func (s Nodes) Remove(e graph.Node) {
delete(s, e.ID())
}
// Count returns the number of element in the set.
func (s Nodes) Count() int {
return len(s)
}
// Has reports the existence of the elements in the set.
func (s Nodes) Has(n graph.Node) bool {
_, ok := s[n.ID()]
return ok
}
// CloneNodes returns a clone of src.
func CloneNodes(src Nodes) Nodes {
dst := make(Nodes, len(src))
for e, n := range src {
dst[e] = n
}
return dst
}
// Equal reports set equality between the parameters. Sets are equal if
// and only if they have the same elements.
func Equal(a, b Nodes) bool {
if same(a, b) {
return true
}
if len(a) != len(b) {
return false
}
for e := range a {
if _, ok := b[e]; !ok {
return false
}
}
return true
}
// UnionOfNodes returns the union of a and b.
//
// The union of two sets, a and b, is the set containing all the
// elements of each, for instance:
//
// {a,b,c} UNION {d,e,f} = {a,b,c,d,e,f}
//
// Since sets may not have repetition, unions of two sets that overlap
// do not contain repeat elements, that is:
//
// {a,b,c} UNION {b,c,d} = {a,b,c,d}
//
func UnionOfNodes(a, b Nodes) Nodes {
if same(a, b) {
return CloneNodes(a)
}
dst := make(Nodes)
for e, n := range a {
dst[e] = n
}
for e, n := range b {
dst[e] = n
}
return dst
}
// IntersectionOfNodes returns the intersection of a and b.
//
// The intersection of two sets, a and b, is the set containing all
// the elements shared between the two sets, for instance:
//
// {a,b,c} INTERSECT {b,c,d} = {b,c}
//
// The intersection between a set and itself is itself, and thus
// effectively a copy operation:
//
// {a,b,c} INTERSECT {a,b,c} = {a,b,c}
//
// The intersection between two sets that share no elements is the empty
// set:
//
// {a,b,c} INTERSECT {d,e,f} = {}
//
func IntersectionOfNodes(a, b Nodes) Nodes {
if same(a, b) {
return CloneNodes(a)
}
dst := make(Nodes)
if len(a) > len(b) {
a, b = b, a
}
for e, n := range a {
if _, ok := b[e]; ok {
dst[e] = n
}
}
return dst
}

54
vendor/gonum.org/v1/gonum/graph/internal/uid/uid.go generated vendored Normal file
View File

@@ -0,0 +1,54 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package uid implements unique ID provision for graphs.
package uid
import "gonum.org/v1/gonum/graph/internal/set"
// Max is the maximum value of int64.
const Max = int64(^uint64(0) >> 1)
// Set implements available ID storage.
type Set struct {
maxID int64
used, free set.Int64s
}
// NewSet returns a new Set. The returned value should not be passed except by pointer.
func NewSet() Set {
return Set{maxID: -1, used: make(set.Int64s), free: make(set.Int64s)}
}
// NewID returns a new unique ID. The ID returned is not considered used
// until passed in a call to use.
func (s *Set) NewID() int64 {
for id := range s.free {
return id
}
if s.maxID != Max {
return s.maxID + 1
}
for id := int64(0); id <= s.maxID+1; id++ {
if !s.used.Has(id) {
return id
}
}
panic("unreachable")
}
// Use adds the id to the used IDs in the Set.
func (s *Set) Use(id int64) {
s.used.Add(id)
s.free.Remove(id)
if id > s.maxID {
s.maxID = id
}
}
// Release frees the id for reuse.
func (s *Set) Release(id int64) {
s.free.Add(id)
s.used.Remove(id)
}

9
vendor/gonum.org/v1/gonum/graph/iterator/doc.go generated vendored Normal file
View File

@@ -0,0 +1,9 @@
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package iterator provides node, edge and line iterators.
//
// The iterators provided satisfy the graph.Nodes, graph.Edges and
// graph.Lines interfaces.
package iterator

131
vendor/gonum.org/v1/gonum/graph/iterator/edges.go generated vendored Normal file
View File

@@ -0,0 +1,131 @@
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package iterator
import "gonum.org/v1/gonum/graph"
// OrderedEdges implements the graph.Edges and graph.EdgeSlicer interfaces.
// The iteration order of OrderedEdges is the order of edges passed to
// NewEdgeIterator.
type OrderedEdges struct {
idx int
edges []graph.Edge
}
// NewOrderedEdges returns an OrderedEdges initialized with the provided edges.
func NewOrderedEdges(edges []graph.Edge) *OrderedEdges {
return &OrderedEdges{idx: -1, edges: edges}
}
// Len returns the remaining number of edges to be iterated over.
func (e *OrderedEdges) Len() int {
if e.idx >= len(e.edges) {
return 0
}
if e.idx <= 0 {
return len(e.edges)
}
return len(e.edges[e.idx:])
}
// Next returns whether the next call of Edge will return a valid edge.
func (e *OrderedEdges) Next() bool {
if uint(e.idx)+1 < uint(len(e.edges)) {
e.idx++
return true
}
e.idx = len(e.edges)
return false
}
// Edge returns the current edge of the iterator. Next must have been
// called prior to a call to Edge.
func (e *OrderedEdges) Edge() graph.Edge {
if e.idx >= len(e.edges) || e.idx < 0 {
return nil
}
return e.edges[e.idx]
}
// EdgeSlice returns all the remaining edges in the iterator and advances
// the iterator.
func (e *OrderedEdges) EdgeSlice() []graph.Edge {
if e.idx >= len(e.edges) {
return nil
}
idx := e.idx
if idx == -1 {
idx = 0
}
e.idx = len(e.edges)
return e.edges[idx:]
}
// Reset returns the iterator to its initial state.
func (e *OrderedEdges) Reset() {
e.idx = -1
}
// OrderedWeightedEdges implements the graph.Edges and graph.EdgeSlicer interfaces.
// The iteration order of OrderedWeightedEdges is the order of edges passed to
// NewEdgeIterator.
type OrderedWeightedEdges struct {
idx int
edges []graph.WeightedEdge
}
// NewOrderedWeightedEdges returns an OrderedWeightedEdges initialized with the provided edges.
func NewOrderedWeightedEdges(edges []graph.WeightedEdge) *OrderedWeightedEdges {
return &OrderedWeightedEdges{idx: -1, edges: edges}
}
// Len returns the remaining number of edges to be iterated over.
func (e *OrderedWeightedEdges) Len() int {
if e.idx >= len(e.edges) {
return 0
}
if e.idx <= 0 {
return len(e.edges)
}
return len(e.edges[e.idx:])
}
// Next returns whether the next call of WeightedEdge will return a valid edge.
func (e *OrderedWeightedEdges) Next() bool {
if uint(e.idx)+1 < uint(len(e.edges)) {
e.idx++
return true
}
e.idx = len(e.edges)
return false
}
// WeightedEdge returns the current edge of the iterator. Next must have been
// called prior to a call to WeightedEdge.
func (e *OrderedWeightedEdges) WeightedEdge() graph.WeightedEdge {
if e.idx >= len(e.edges) || e.idx < 0 {
return nil
}
return e.edges[e.idx]
}
// WeightedEdgeSlice returns all the remaining edges in the iterator and advances
// the iterator.
func (e *OrderedWeightedEdges) WeightedEdgeSlice() []graph.WeightedEdge {
if e.idx >= len(e.edges) {
return nil
}
idx := e.idx
if idx == -1 {
idx = 0
}
e.idx = len(e.edges)
return e.edges[idx:]
}
// Reset returns the iterator to its initial state.
func (e *OrderedWeightedEdges) Reset() {
e.idx = -1
}

131
vendor/gonum.org/v1/gonum/graph/iterator/lines.go generated vendored Normal file
View File

@@ -0,0 +1,131 @@
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package iterator
import "gonum.org/v1/gonum/graph"
// OrderedLines implements the graph.Lines and graph.LineSlicer interfaces.
// The iteration order of OrderedLines is the order of lines passed to
// NewLineIterator.
type OrderedLines struct {
idx int
lines []graph.Line
}
// NewOrderedLines returns an OrderedLines initialized with the provided lines.
func NewOrderedLines(lines []graph.Line) *OrderedLines {
return &OrderedLines{idx: -1, lines: lines}
}
// Len returns the remaining number of lines to be iterated over.
func (e *OrderedLines) Len() int {
if e.idx >= len(e.lines) {
return 0
}
if e.idx <= 0 {
return len(e.lines)
}
return len(e.lines[e.idx:])
}
// Next returns whether the next call of Line will return a valid line.
func (e *OrderedLines) Next() bool {
if uint(e.idx)+1 < uint(len(e.lines)) {
e.idx++
return true
}
e.idx = len(e.lines)
return false
}
// Line returns the current line of the iterator. Next must have been
// called prior to a call to Line.
func (e *OrderedLines) Line() graph.Line {
if e.idx >= len(e.lines) || e.idx < 0 {
return nil
}
return e.lines[e.idx]
}
// LineSlice returns all the remaining lines in the iterator and advances
// the iterator.
func (e *OrderedLines) LineSlice() []graph.Line {
if e.idx >= len(e.lines) {
return nil
}
idx := e.idx
if idx == -1 {
idx = 0
}
e.idx = len(e.lines)
return e.lines[idx:]
}
// Reset returns the iterator to its initial state.
func (e *OrderedLines) Reset() {
e.idx = -1
}
// OrderedWeightedLines implements the graph.Lines and graph.LineSlicer interfaces.
// The iteration order of OrderedWeightedLines is the order of lines passed to
// NewLineIterator.
type OrderedWeightedLines struct {
idx int
lines []graph.WeightedLine
}
// NewWeightedLineIterator returns an OrderedWeightedLines initialized with the provided lines.
func NewOrderedWeightedLines(lines []graph.WeightedLine) *OrderedWeightedLines {
return &OrderedWeightedLines{idx: -1, lines: lines}
}
// Len returns the remaining number of lines to be iterated over.
func (e *OrderedWeightedLines) Len() int {
if e.idx >= len(e.lines) {
return 0
}
if e.idx <= 0 {
return len(e.lines)
}
return len(e.lines[e.idx:])
}
// Next returns whether the next call of WeightedLine will return a valid line.
func (e *OrderedWeightedLines) Next() bool {
if uint(e.idx)+1 < uint(len(e.lines)) {
e.idx++
return true
}
e.idx = len(e.lines)
return false
}
// WeightedLine returns the current line of the iterator. Next must have been
// called prior to a call to WeightedLine.
func (e *OrderedWeightedLines) WeightedLine() graph.WeightedLine {
if e.idx >= len(e.lines) || e.idx < 0 {
return nil
}
return e.lines[e.idx]
}
// WeightedLineSlice returns all the remaining lines in the iterator and advances
// the iterator.
func (e *OrderedWeightedLines) WeightedLineSlice() []graph.WeightedLine {
if e.idx >= len(e.lines) {
return nil
}
idx := e.idx
if idx == -1 {
idx = 0
}
e.idx = len(e.lines)
return e.lines[idx:]
}
// Reset returns the iterator to its initial state.
func (e *OrderedWeightedLines) Reset() {
e.idx = -1
}

125
vendor/gonum.org/v1/gonum/graph/iterator/nodes.go generated vendored Normal file
View File

@@ -0,0 +1,125 @@
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package iterator
import "gonum.org/v1/gonum/graph"
// OrderedNodes implements the graph.Nodes and graph.NodeSlicer interfaces.
// The iteration order of OrderedNodes is the order of nodes passed to
// NewNodeIterator.
type OrderedNodes struct {
idx int
nodes []graph.Node
}
// NewOrderedNodes returns a OrderedNodes initialized with the provided nodes.
func NewOrderedNodes(nodes []graph.Node) *OrderedNodes {
return &OrderedNodes{idx: -1, nodes: nodes}
}
// Len returns the remaining number of nodes to be iterated over.
func (n *OrderedNodes) Len() int {
if n.idx >= len(n.nodes) {
return 0
}
if n.idx <= 0 {
return len(n.nodes)
}
return len(n.nodes[n.idx:])
}
// Next returns whether the next call of Node will return a valid node.
func (n *OrderedNodes) Next() bool {
if uint(n.idx)+1 < uint(len(n.nodes)) {
n.idx++
return true
}
n.idx = len(n.nodes)
return false
}
// Node returns the current node of the iterator. Next must have been
// called prior to a call to Node.
func (n *OrderedNodes) Node() graph.Node {
if n.idx >= len(n.nodes) || n.idx < 0 {
return nil
}
return n.nodes[n.idx]
}
// NodeSlice returns all the remaining nodes in the iterator and advances
// the iterator.
func (n *OrderedNodes) NodeSlice() []graph.Node {
if n.idx >= len(n.nodes) {
return nil
}
idx := n.idx
if idx == -1 {
idx = 0
}
n.idx = len(n.nodes)
return n.nodes[idx:]
}
// Reset returns the iterator to its initial state.
func (n *OrderedNodes) Reset() {
n.idx = -1
}
// ImplicitNodes implements the graph.Nodes interface for a set of nodes over
// a contiguous ID range.
type ImplicitNodes struct {
beg, end int
curr int
newNode func(id int) graph.Node
}
// NewImplicitNodes returns a new implicit node iterator spanning nodes in [beg,end).
// The provided new func maps the id to a graph.Node. NewImplicitNodes will panic
// if beg is greater than end.
func NewImplicitNodes(beg, end int, new func(id int) graph.Node) *ImplicitNodes {
if beg > end {
panic("iterator: invalid range")
}
return &ImplicitNodes{beg: beg, end: end, curr: beg - 1, newNode: new}
}
// Len returns the remaining number of nodes to be iterated over.
func (n *ImplicitNodes) Len() int {
return n.end - n.curr - 1
}
// Next returns whether the next call of Node will return a valid node.
func (n *ImplicitNodes) Next() bool {
if n.curr == n.end {
return false
}
n.curr++
return n.curr < n.end
}
// Node returns the current node of the iterator. Next must have been
// called prior to a call to Node.
func (n *ImplicitNodes) Node() graph.Node {
if n.Len() == -1 || n.curr < n.beg {
return nil
}
return n.newNode(n.curr)
}
// Reset returns the iterator to its initial state.
func (n *ImplicitNodes) Reset() {
n.curr = n.beg - 1
}
// NodeSlice returns all the remaining nodes in the iterator and advances
// the iterator.
func (n *ImplicitNodes) NodeSlice() []graph.Node {
nodes := make([]graph.Node, 0, n.Len())
for n.curr++; n.curr < n.end; n.curr++ {
nodes = append(nodes, n.newNode(n.curr))
}
return nodes
}

198
vendor/gonum.org/v1/gonum/graph/multigraph.go generated vendored Normal file
View File

@@ -0,0 +1,198 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package graph
// Line is an edge in a multigraph. A Line returns an ID that must
// distinguish Lines sharing Node end points.
type Line interface {
// From returns the from node of the edge.
From() Node
// To returns the to node of the edge.
To() Node
// ReversedLine returns a line that has the
// end points of the receiver swapped.
ReversedLine() Line
// ID returns the unique ID for the Line.
ID() int64
}
// WeightedLine is a weighted multigraph edge.
type WeightedLine interface {
Line
Weight() float64
}
// Multigraph is a generalized multigraph.
type Multigraph interface {
// Node returns the node with the given ID if it exists
// in the multigraph, and nil otherwise.
Node(id int64) Node
// Nodes returns all the nodes in the multigraph.
//
// Nodes must not return nil.
Nodes() Nodes
// From returns all nodes that can be reached directly
// from the node with the given ID.
//
// From must not return nil.
From(id int64) Nodes
// HasEdgeBetween returns whether an edge exists between
// nodes with IDs xid and yid without considering direction.
HasEdgeBetween(xid, yid int64) bool
// Lines returns the lines from u to v, with IDs uid and
// vid, if any such lines exist and nil otherwise. The
// node v must be directly reachable from u as defined by
// the From method.
//
// Lines must not return nil.
Lines(uid, vid int64) Lines
}
// WeightedMultigraph is a weighted multigraph.
type WeightedMultigraph interface {
Multigraph
// WeightedLines returns the weighted lines from u to v
// with IDs uid and vid if any such lines exist and nil
// otherwise. The node v must be directly reachable
// from u as defined by the From method.
//
// WeightedLines must not return nil.
WeightedLines(uid, vid int64) WeightedLines
}
// UndirectedMultigraph is an undirected multigraph.
type UndirectedMultigraph interface {
Multigraph
// LinesBetween returns the lines between nodes x and y
// with IDs xid and yid.
//
// LinesBetween must not return nil.
LinesBetween(xid, yid int64) Lines
}
// WeightedUndirectedMultigraph is a weighted undirected multigraph.
type WeightedUndirectedMultigraph interface {
WeightedMultigraph
// WeightedLinesBetween returns the lines between nodes
// x and y with IDs xid and yid.
//
// WeightedLinesBetween must not return nil.
WeightedLinesBetween(xid, yid int64) WeightedLines
}
// DirectedMultigraph is a directed multigraph.
type DirectedMultigraph interface {
Multigraph
// HasEdgeFromTo returns whether an edge exists
// in the multigraph from u to v with IDs uid
// and vid.
HasEdgeFromTo(uid, vid int64) bool
// To returns all nodes that can reach directly
// to the node with the given ID.
//
// To must not return nil.
To(id int64) Nodes
}
// WeightedDirectedMultigraph is a weighted directed multigraph.
type WeightedDirectedMultigraph interface {
WeightedMultigraph
// HasEdgeFromTo returns whether an edge exists
// in the multigraph from u to v with IDs uid
// and vid.
HasEdgeFromTo(uid, vid int64) bool
// To returns all nodes that can reach directly
// to the node with the given ID.
//
// To must not return nil.
To(id int64) Nodes
}
// LineAdder is an interface for adding lines to a multigraph.
type LineAdder interface {
// NewLine returns a new Line from the source to the destination node.
NewLine(from, to Node) Line
// SetLine adds a Line from one node to another.
// If the multigraph supports node addition the nodes
// will be added if they do not exist, otherwise
// SetLine will panic.
// Whether l, l.From() and l.To() are stored
// within the graph is implementation dependent.
SetLine(l Line)
}
// WeightedLineAdder is an interface for adding lines to a multigraph.
type WeightedLineAdder interface {
// NewWeightedLine returns a new WeightedLine from
// the source to the destination node.
NewWeightedLine(from, to Node, weight float64) WeightedLine
// SetWeightedLine adds a weighted line from one node
// to another. If the multigraph supports node addition
// the nodes will be added if they do not exist,
// otherwise SetWeightedLine will panic.
// Whether l, l.From() and l.To() are stored
// within the graph is implementation dependent.
SetWeightedLine(l WeightedLine)
}
// LineRemover is an interface for removing lines from a multigraph.
type LineRemover interface {
// RemoveLine removes the line with the given end
// and line IDs, leaving the terminal nodes. If
// the line does not exist it is a no-op.
RemoveLine(fid, tid, id int64)
}
// MultigraphBuilder is a multigraph that can have nodes and lines added.
type MultigraphBuilder interface {
NodeAdder
LineAdder
}
// WeightedMultigraphBuilder is a multigraph that can have nodes and weighted lines added.
type WeightedMultigraphBuilder interface {
NodeAdder
WeightedLineAdder
}
// UndirectedMultgraphBuilder is an undirected multigraph builder.
type UndirectedMultigraphBuilder interface {
UndirectedMultigraph
MultigraphBuilder
}
// UndirectedWeightedMultigraphBuilder is an undirected weighted multigraph builder.
type UndirectedWeightedMultigraphBuilder interface {
UndirectedMultigraph
WeightedMultigraphBuilder
}
// DirectedMultigraphBuilder is a directed multigraph builder.
type DirectedMultigraphBuilder interface {
DirectedMultigraph
MultigraphBuilder
}
// DirectedWeightedMultigraphBuilder is a directed weighted multigraph builder.
type DirectedWeightedMultigraphBuilder interface {
DirectedMultigraph
WeightedMultigraphBuilder
}

300
vendor/gonum.org/v1/gonum/graph/nodes_edges.go generated vendored Normal file
View File

@@ -0,0 +1,300 @@
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package graph
// Iterator is an item iterator.
type Iterator interface {
// Next advances the iterator and returns whether
// the next call to the item method will return a
// non-nil item.
//
// Next should be called prior to any call to the
// iterator's item retrieval method after the
// iterator has been obtained or reset.
//
// The order of iteration is implementation
// dependent.
Next() bool
// Len returns the number of items remaining in the
// iterator.
//
// If the number of items in the iterator is unknown,
// too large to materialize or too costly to calculate
// then Len may return a negative value.
// In this case the consuming function must be able
// to operate on the items of the iterator directly
// without materializing the items into a slice.
// The magnitude of a negative length has
// implementation-dependent semantics.
Len() int
// Reset returns the iterator to its start position.
Reset()
}
// Nodes is a Node iterator.
type Nodes interface {
Iterator
// Node returns the current Node from the iterator.
Node() Node
}
// NodeSlicer wraps the NodeSlice method.
type NodeSlicer interface {
// NodeSlice returns the set of nodes remaining
// to be iterated by a Nodes iterator.
// The holder of the iterator may arbitrarily
// change elements in the returned slice, but
// those changes may be reflected to other
// iterators.
NodeSlice() []Node
}
// NodesOf returns it.Len() nodes from it. If it is a NodeSlicer, the NodeSlice method
// is used to obtain the nodes. It is safe to pass a nil Nodes to NodesOf.
//
// If the Nodes has an indeterminate length, NodesOf will panic.
func NodesOf(it Nodes) []Node {
if it == nil {
return nil
}
len := it.Len()
switch {
case len == 0:
return nil
case len < 0:
panic("graph: called NodesOf on indeterminate iterator")
}
switch it := it.(type) {
case NodeSlicer:
return it.NodeSlice()
}
n := make([]Node, 0, len)
for it.Next() {
n = append(n, it.Node())
}
return n
}
// Edges is an Edge iterator.
type Edges interface {
Iterator
// Edge returns the current Edge from the iterator.
Edge() Edge
}
// EdgeSlicer wraps the EdgeSlice method.
type EdgeSlicer interface {
// EdgeSlice returns the set of edges remaining
// to be iterated by an Edges iterator.
// The holder of the iterator may arbitrarily
// change elements in the returned slice, but
// those changes may be reflected to other
// iterators.
EdgeSlice() []Edge
}
// EdgesOf returns it.Len() nodes from it. If it is an EdgeSlicer, the EdgeSlice method is used
// to obtain the edges. It is safe to pass a nil Edges to EdgesOf.
//
// If the Edges has an indeterminate length, EdgesOf will panic.
func EdgesOf(it Edges) []Edge {
if it == nil {
return nil
}
len := it.Len()
switch {
case len == 0:
return nil
case len < 0:
panic("graph: called EdgesOf on indeterminate iterator")
}
switch it := it.(type) {
case EdgeSlicer:
return it.EdgeSlice()
}
e := make([]Edge, 0, len)
for it.Next() {
e = append(e, it.Edge())
}
return e
}
// WeightedEdges is a WeightedEdge iterator.
type WeightedEdges interface {
Iterator
// Edge returns the current Edge from the iterator.
WeightedEdge() WeightedEdge
}
// WeightedEdgeSlicer wraps the WeightedEdgeSlice method.
type WeightedEdgeSlicer interface {
// EdgeSlice returns the set of edges remaining
// to be iterated by an Edges iterator.
// The holder of the iterator may arbitrarily
// change elements in the returned slice, but
// those changes may be reflected to other
// iterators.
WeightedEdgeSlice() []WeightedEdge
}
// WeightedEdgesOf returns it.Len() weighted edge from it. If it is a WeightedEdgeSlicer, the
// WeightedEdgeSlice method is used to obtain the edges. It is safe to pass a nil WeightedEdges
// to WeightedEdgesOf.
//
// If the WeightedEdges has an indeterminate length, WeightedEdgesOf will panic.
func WeightedEdgesOf(it WeightedEdges) []WeightedEdge {
if it == nil {
return nil
}
len := it.Len()
switch {
case len == 0:
return nil
case len < 0:
panic("graph: called WeightedEdgesOf on indeterminate iterator")
}
switch it := it.(type) {
case WeightedEdgeSlicer:
return it.WeightedEdgeSlice()
}
e := make([]WeightedEdge, 0, len)
for it.Next() {
e = append(e, it.WeightedEdge())
}
return e
}
// Lines is a Line iterator.
type Lines interface {
Iterator
// Line returns the current Line from the iterator.
Line() Line
}
// LineSlicer wraps the LineSlice method.
type LineSlicer interface {
// LineSlice returns the set of lines remaining
// to be iterated by an Lines iterator.
// The holder of the iterator may arbitrarily
// change elements in the returned slice, but
// those changes may be reflected to other
// iterators.
LineSlice() []Line
}
// LinesOf returns it.Len() nodes from it. If it is a LineSlicer, the LineSlice method is used
// to obtain the lines. It is safe to pass a nil Lines to LinesOf.
//
// If the Lines has an indeterminate length, LinesOf will panic.
func LinesOf(it Lines) []Line {
if it == nil {
return nil
}
len := it.Len()
switch {
case len == 0:
return nil
case len < 0:
panic("graph: called LinesOf on indeterminate iterator")
}
switch it := it.(type) {
case LineSlicer:
return it.LineSlice()
}
l := make([]Line, 0, len)
for it.Next() {
l = append(l, it.Line())
}
return l
}
// WeightedLines is a WeightedLine iterator.
type WeightedLines interface {
Iterator
// Line returns the current Line from the iterator.
WeightedLine() WeightedLine
}
// WeightedLineSlicer wraps the WeightedLineSlice method.
type WeightedLineSlicer interface {
// LineSlice returns the set of lines remaining
// to be iterated by an Lines iterator.
// The holder of the iterator may arbitrarily
// change elements in the returned slice, but
// those changes may be reflected to other
// iterators.
WeightedLineSlice() []WeightedLine
}
// WeightedLinesOf returns it.Len() weighted line from it. If it is a WeightedLineSlicer, the
// WeightedLineSlice method is used to obtain the lines. It is safe to pass a nil WeightedLines
// to WeightedLinesOf.
//
// If the WeightedLines has an indeterminate length, WeightedLinesOf will panic.
func WeightedLinesOf(it WeightedLines) []WeightedLine {
if it == nil {
return nil
}
len := it.Len()
switch {
case len == 0:
return nil
case len < 0:
panic("graph: called WeightedLinesOf on indeterminate iterator")
}
switch it := it.(type) {
case WeightedLineSlicer:
return it.WeightedLineSlice()
}
l := make([]WeightedLine, 0, len)
for it.Next() {
l = append(l, it.WeightedLine())
}
return l
}
// Empty is an empty set of nodes, edges or lines. It should be used when
// a graph returns a zero-length Iterator. Empty implements the slicer
// interfaces for nodes, edges and lines, returning nil for each of these.
const Empty = nothing
var (
_ Iterator = Empty
_ Nodes = Empty
_ NodeSlicer = Empty
_ Edges = Empty
_ EdgeSlicer = Empty
_ WeightedEdges = Empty
_ WeightedEdgeSlicer = Empty
_ Lines = Empty
_ LineSlicer = Empty
_ WeightedLines = Empty
_ WeightedLineSlicer = Empty
)
const nothing = empty(true)
type empty bool
func (empty) Next() bool { return false }
func (empty) Len() int { return 0 }
func (empty) Reset() {}
func (empty) Node() Node { return nil }
func (empty) NodeSlice() []Node { return nil }
func (empty) Edge() Edge { return nil }
func (empty) EdgeSlice() []Edge { return nil }
func (empty) WeightedEdge() WeightedEdge { return nil }
func (empty) WeightedEdgeSlice() []WeightedEdge { return nil }
func (empty) Line() Line { return nil }
func (empty) LineSlice() []Line { return nil }
func (empty) WeightedLine() WeightedLine { return nil }
func (empty) WeightedLineSlice() []WeightedLine { return nil }

View File

@@ -0,0 +1,301 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package simple
import (
"sort"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/ordered"
"gonum.org/v1/gonum/graph/iterator"
"gonum.org/v1/gonum/mat"
)
var (
dm *DirectedMatrix
_ graph.Graph = dm
_ graph.Directed = dm
_ edgeSetter = dm
_ weightedEdgeSetter = dm
)
// DirectedMatrix represents a directed graph using an adjacency
// matrix such that all IDs are in a contiguous block from 0 to n-1.
// Edges are stored implicitly as an edge weight, so edges stored in
// the graph are not recoverable.
type DirectedMatrix struct {
mat *mat.Dense
nodes []graph.Node
self float64
absent float64
}
// NewDirectedMatrix creates a directed dense graph with n nodes.
// All edges are initialized with the weight given by init. The self parameter
// specifies the cost of self connection, and absent specifies the weight
// returned for absent edges.
func NewDirectedMatrix(n int, init, self, absent float64) *DirectedMatrix {
matrix := make([]float64, n*n)
if init != 0 {
for i := range matrix {
matrix[i] = init
}
}
for i := 0; i < len(matrix); i += n + 1 {
matrix[i] = self
}
return &DirectedMatrix{
mat: mat.NewDense(n, n, matrix),
self: self,
absent: absent,
}
}
// NewDirectedMatrixFrom creates a directed dense graph with the given nodes.
// The IDs of the nodes must be contiguous from 0 to len(nodes)-1, but may
// be in any order. If IDs are not contiguous NewDirectedMatrixFrom will panic.
// All edges are initialized with the weight given by init. The self parameter
// specifies the cost of self connection, and absent specifies the weight
// returned for absent edges.
func NewDirectedMatrixFrom(nodes []graph.Node, init, self, absent float64) *DirectedMatrix {
sort.Sort(ordered.ByID(nodes))
for i, n := range nodes {
if int64(i) != n.ID() {
panic("simple: non-contiguous node IDs")
}
}
g := NewDirectedMatrix(len(nodes), init, self, absent)
g.nodes = nodes
return g
}
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g *DirectedMatrix) Edge(uid, vid int64) graph.Edge {
return g.WeightedEdge(uid, vid)
}
// Edges returns all the edges in the graph.
func (g *DirectedMatrix) Edges() graph.Edges {
var edges []graph.Edge
r, _ := g.mat.Dims()
for i := 0; i < r; i++ {
for j := 0; j < r; j++ {
if i == j {
continue
}
if w := g.mat.At(i, j); !isSame(w, g.absent) {
edges = append(edges, WeightedEdge{F: g.Node(int64(i)), T: g.Node(int64(j)), W: w})
}
}
}
if len(edges) == 0 {
return graph.Empty
}
return iterator.NewOrderedEdges(edges)
}
// From returns all nodes in g that can be reached directly from n.
func (g *DirectedMatrix) From(id int64) graph.Nodes {
if !g.has(id) {
return graph.Empty
}
var nodes []graph.Node
_, c := g.mat.Dims()
for j := 0; j < c; j++ {
if int64(j) == id {
continue
}
// id is not greater than maximum int by this point.
if !isSame(g.mat.At(int(id), j), g.absent) {
nodes = append(nodes, g.Node(int64(j)))
}
}
if len(nodes) == 0 {
return graph.Empty
}
return iterator.NewOrderedNodes(nodes)
}
// HasEdgeBetween returns whether an edge exists between nodes x and y without
// considering direction.
func (g *DirectedMatrix) HasEdgeBetween(xid, yid int64) bool {
if !g.has(xid) {
return false
}
if !g.has(yid) {
return false
}
// xid and yid are not greater than maximum int by this point.
return xid != yid && (!isSame(g.mat.At(int(xid), int(yid)), g.absent) || !isSame(g.mat.At(int(yid), int(xid)), g.absent))
}
// HasEdgeFromTo returns whether an edge exists in the graph from u to v.
func (g *DirectedMatrix) HasEdgeFromTo(uid, vid int64) bool {
if !g.has(uid) {
return false
}
if !g.has(vid) {
return false
}
// uid and vid are not greater than maximum int by this point.
return uid != vid && !isSame(g.mat.At(int(uid), int(vid)), g.absent)
}
// Matrix returns the mat.Matrix representation of the graph. The orientation
// of the matrix is such that the matrix entry at G_{ij} is the weight of the edge
// from node i to node j.
func (g *DirectedMatrix) Matrix() mat.Matrix {
// Prevent alteration of dimensions of the returned matrix.
m := *g.mat
return &m
}
// Node returns the node with the given ID if it exists in the graph,
// and nil otherwise.
func (g *DirectedMatrix) Node(id int64) graph.Node {
if !g.has(id) {
return nil
}
if g.nodes == nil {
return Node(id)
}
return g.nodes[id]
}
// Nodes returns all the nodes in the graph.
func (g *DirectedMatrix) Nodes() graph.Nodes {
if g.nodes != nil {
nodes := make([]graph.Node, len(g.nodes))
copy(nodes, g.nodes)
return iterator.NewOrderedNodes(nodes)
}
r, _ := g.mat.Dims()
// Matrix graphs must have at least one node.
return iterator.NewImplicitNodes(0, r, newSimpleNode)
}
// RemoveEdge removes the edge with the given end point nodes from the graph, leaving the terminal
// nodes. If the edge does not exist it is a no-op.
func (g *DirectedMatrix) RemoveEdge(fid, tid int64) {
if !g.has(fid) {
return
}
if !g.has(tid) {
return
}
// fid and tid are not greater than maximum int by this point.
g.mat.Set(int(fid), int(tid), g.absent)
}
// SetEdge sets e, an edge from one node to another with unit weight. If the ends of the edge
// are not in g or the edge is a self loop, SetEdge panics. SetEdge will store the nodes of
// e in the graph if it was initialized with NewDirectedMatrixFrom.
func (g *DirectedMatrix) SetEdge(e graph.Edge) {
g.setWeightedEdge(e, 1)
}
// SetWeightedEdge sets e, an edge from one node to another. If the ends of the edge are not in g
// or the edge is a self loop, SetWeightedEdge panics. SetWeightedEdge will store the nodes of
// e in the graph if it was initialized with NewDirectedMatrixFrom.
func (g *DirectedMatrix) SetWeightedEdge(e graph.WeightedEdge) {
g.setWeightedEdge(e, e.Weight())
}
func (g *DirectedMatrix) setWeightedEdge(e graph.Edge, weight float64) {
from := e.From()
fid := from.ID()
to := e.To()
tid := to.ID()
if fid == tid {
panic("simple: set illegal edge")
}
if int64(int(fid)) != fid {
panic("simple: unavailable from node ID for dense graph")
}
if int64(int(tid)) != tid {
panic("simple: unavailable to node ID for dense graph")
}
if g.nodes != nil {
g.nodes[fid] = from
g.nodes[tid] = to
}
// fid and tid are not greater than maximum int by this point.
g.mat.Set(int(fid), int(tid), weight)
}
// To returns all nodes in g that can reach directly to n.
func (g *DirectedMatrix) To(id int64) graph.Nodes {
if !g.has(id) {
return graph.Empty
}
var nodes []graph.Node
r, _ := g.mat.Dims()
for i := 0; i < r; i++ {
if int64(i) == id {
continue
}
// id is not greater than maximum int by this point.
if !isSame(g.mat.At(i, int(id)), g.absent) {
nodes = append(nodes, g.Node(int64(i)))
}
}
if len(nodes) == 0 {
return graph.Empty
}
return iterator.NewOrderedNodes(nodes)
}
// Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge.
// If x and y are the same node or there is no joining edge between the two nodes the weight
// value returned is either the graph's absent or self value. Weight returns true if an edge
// exists between x and y or if x and y have the same ID, false otherwise.
func (g *DirectedMatrix) Weight(xid, yid int64) (w float64, ok bool) {
if xid == yid {
return g.self, true
}
if g.HasEdgeFromTo(xid, yid) {
// xid and yid are not greater than maximum int by this point.
return g.mat.At(int(xid), int(yid)), true
}
return g.absent, false
}
// WeightedEdge returns the weighted edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g *DirectedMatrix) WeightedEdge(uid, vid int64) graph.WeightedEdge {
if g.HasEdgeFromTo(uid, vid) {
// xid and yid are not greater than maximum int by this point.
return WeightedEdge{F: g.Node(uid), T: g.Node(vid), W: g.mat.At(int(uid), int(vid))}
}
return nil
}
// WeightedEdges returns all the edges in the graph.
func (g *DirectedMatrix) WeightedEdges() graph.WeightedEdges {
var edges []graph.WeightedEdge
r, _ := g.mat.Dims()
for i := 0; i < r; i++ {
for j := 0; j < r; j++ {
if i == j {
continue
}
if w := g.mat.At(i, j); !isSame(w, g.absent) {
edges = append(edges, WeightedEdge{F: g.Node(int64(i)), T: g.Node(int64(j)), W: w})
}
}
}
if len(edges) == 0 {
return graph.Empty
}
return iterator.NewOrderedWeightedEdges(edges)
}
func (g *DirectedMatrix) has(id int64) bool {
r, _ := g.mat.Dims()
return 0 <= id && id < int64(r)
}

View File

@@ -0,0 +1,268 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package simple
import (
"sort"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/ordered"
"gonum.org/v1/gonum/graph/iterator"
"gonum.org/v1/gonum/mat"
)
var (
um *UndirectedMatrix
_ graph.Graph = um
_ graph.Undirected = um
_ edgeSetter = um
_ weightedEdgeSetter = um
)
// UndirectedMatrix represents an undirected graph using an adjacency
// matrix such that all IDs are in a contiguous block from 0 to n-1.
// Edges are stored implicitly as an edge weight, so edges stored in
// the graph are not recoverable.
type UndirectedMatrix struct {
mat *mat.SymDense
nodes []graph.Node
self float64
absent float64
}
// NewUndirectedMatrix creates an undirected dense graph with n nodes.
// All edges are initialized with the weight given by init. The self parameter
// specifies the cost of self connection, and absent specifies the weight
// returned for absent edges.
func NewUndirectedMatrix(n int, init, self, absent float64) *UndirectedMatrix {
matrix := make([]float64, n*n)
if init != 0 {
for i := range matrix {
matrix[i] = init
}
}
for i := 0; i < len(matrix); i += n + 1 {
matrix[i] = self
}
return &UndirectedMatrix{
mat: mat.NewSymDense(n, matrix),
self: self,
absent: absent,
}
}
// NewUndirectedMatrixFrom creates an undirected dense graph with the given nodes.
// The IDs of the nodes must be contiguous from 0 to len(nodes)-1, but may
// be in any order. If IDs are not contiguous NewUndirectedMatrixFrom will panic.
// All edges are initialized with the weight given by init. The self parameter
// specifies the cost of self connection, and absent specifies the weight
// returned for absent edges.
func NewUndirectedMatrixFrom(nodes []graph.Node, init, self, absent float64) *UndirectedMatrix {
sort.Sort(ordered.ByID(nodes))
for i, n := range nodes {
if int64(i) != n.ID() {
panic("simple: non-contiguous node IDs")
}
}
g := NewUndirectedMatrix(len(nodes), init, self, absent)
g.nodes = nodes
return g
}
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g *UndirectedMatrix) Edge(uid, vid int64) graph.Edge {
return g.WeightedEdgeBetween(uid, vid)
}
// EdgeBetween returns the edge between nodes x and y.
func (g *UndirectedMatrix) EdgeBetween(uid, vid int64) graph.Edge {
return g.WeightedEdgeBetween(uid, vid)
}
// Edges returns all the edges in the graph.
func (g *UndirectedMatrix) Edges() graph.Edges {
var edges []graph.Edge
r, _ := g.mat.Dims()
for i := 0; i < r; i++ {
for j := i + 1; j < r; j++ {
if w := g.mat.At(i, j); !isSame(w, g.absent) {
edges = append(edges, WeightedEdge{F: g.Node(int64(i)), T: g.Node(int64(j)), W: w})
}
}
}
if len(edges) == 0 {
return graph.Empty
}
return iterator.NewOrderedEdges(edges)
}
// From returns all nodes in g that can be reached directly from n.
func (g *UndirectedMatrix) From(id int64) graph.Nodes {
if !g.has(id) {
return graph.Empty
}
var nodes []graph.Node
r := g.mat.Symmetric()
for i := 0; i < r; i++ {
if int64(i) == id {
continue
}
// id is not greater than maximum int by this point.
if !isSame(g.mat.At(int(id), i), g.absent) {
nodes = append(nodes, g.Node(int64(i)))
}
}
if len(nodes) == 0 {
return graph.Empty
}
return iterator.NewOrderedNodes(nodes)
}
// HasEdgeBetween returns whether an edge exists between nodes x and y.
func (g *UndirectedMatrix) HasEdgeBetween(uid, vid int64) bool {
if !g.has(uid) {
return false
}
if !g.has(vid) {
return false
}
// uid and vid are not greater than maximum int by this point.
return uid != vid && !isSame(g.mat.At(int(uid), int(vid)), g.absent)
}
// Matrix returns the mat.Matrix representation of the graph.
func (g *UndirectedMatrix) Matrix() mat.Matrix {
// Prevent alteration of dimensions of the returned matrix.
m := *g.mat
return &m
}
// Node returns the node with the given ID if it exists in the graph,
// and nil otherwise.
func (g *UndirectedMatrix) Node(id int64) graph.Node {
if !g.has(id) {
return nil
}
if g.nodes == nil {
return Node(id)
}
return g.nodes[id]
}
// Nodes returns all the nodes in the graph.
func (g *UndirectedMatrix) Nodes() graph.Nodes {
if g.nodes != nil {
nodes := make([]graph.Node, len(g.nodes))
copy(nodes, g.nodes)
return iterator.NewOrderedNodes(nodes)
}
r := g.mat.Symmetric()
// Matrix graphs must have at least one node.
return iterator.NewImplicitNodes(0, r, newSimpleNode)
}
// RemoveEdge removes the edge with the given end point IDs from the graph, leaving the terminal
// nodes. If the edge does not exist it is a no-op.
func (g *UndirectedMatrix) RemoveEdge(fid, tid int64) {
if !g.has(fid) {
return
}
if !g.has(tid) {
return
}
// fid and tid are not greater than maximum int by this point.
g.mat.SetSym(int(fid), int(tid), g.absent)
}
// SetEdge sets e, an edge from one node to another with unit weight. If the ends of the edge are
// not in g or the edge is a self loop, SetEdge panics. SetEdge will store the nodes of
// e in the graph if it was initialized with NewUndirectedMatrixFrom.
func (g *UndirectedMatrix) SetEdge(e graph.Edge) {
g.setWeightedEdge(e, 1)
}
// SetWeightedEdge sets e, an edge from one node to another. If the ends of the edge are not in g
// or the edge is a self loop, SetWeightedEdge panics. SetWeightedEdge will store the nodes of
// e in the graph if it was initialized with NewUndirectedMatrixFrom.
func (g *UndirectedMatrix) SetWeightedEdge(e graph.WeightedEdge) {
g.setWeightedEdge(e, e.Weight())
}
func (g *UndirectedMatrix) setWeightedEdge(e graph.Edge, weight float64) {
from := e.From()
fid := from.ID()
to := e.To()
tid := to.ID()
if fid == tid {
panic("simple: set illegal edge")
}
if int64(int(fid)) != fid {
panic("simple: unavailable from node ID for dense graph")
}
if int64(int(tid)) != tid {
panic("simple: unavailable to node ID for dense graph")
}
if g.nodes != nil {
g.nodes[fid] = from
g.nodes[tid] = to
}
// fid and tid are not greater than maximum int by this point.
g.mat.SetSym(int(fid), int(tid), weight)
}
// Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge.
// If x and y are the same node or there is no joining edge between the two nodes the weight
// value returned is either the graph's absent or self value. Weight returns true if an edge
// exists between x and y or if x and y have the same ID, false otherwise.
func (g *UndirectedMatrix) Weight(xid, yid int64) (w float64, ok bool) {
if xid == yid {
return g.self, true
}
if g.HasEdgeBetween(xid, yid) {
// xid and yid are not greater than maximum int by this point.
return g.mat.At(int(xid), int(yid)), true
}
return g.absent, false
}
// WeightedEdge returns the weighted edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g *UndirectedMatrix) WeightedEdge(uid, vid int64) graph.WeightedEdge {
return g.WeightedEdgeBetween(uid, vid)
}
// WeightedEdgeBetween returns the weighted edge between nodes x and y.
func (g *UndirectedMatrix) WeightedEdgeBetween(uid, vid int64) graph.WeightedEdge {
if g.HasEdgeBetween(uid, vid) {
// uid and vid are not greater than maximum int by this point.
return WeightedEdge{F: g.Node(uid), T: g.Node(vid), W: g.mat.At(int(uid), int(vid))}
}
return nil
}
// WeightedEdges returns all the edges in the graph.
func (g *UndirectedMatrix) WeightedEdges() graph.WeightedEdges {
var edges []graph.WeightedEdge
r, _ := g.mat.Dims()
for i := 0; i < r; i++ {
for j := i + 1; j < r; j++ {
if w := g.mat.At(i, j); !isSame(w, g.absent) {
edges = append(edges, WeightedEdge{F: g.Node(int64(i)), T: g.Node(int64(j)), W: w})
}
}
}
if len(edges) == 0 {
return graph.Empty
}
return iterator.NewOrderedWeightedEdges(edges)
}
func (g *UndirectedMatrix) has(id int64) bool {
r := g.mat.Symmetric()
return 0 <= id && id < int64(r)
}

235
vendor/gonum.org/v1/gonum/graph/simple/directed.go generated vendored Normal file
View File

@@ -0,0 +1,235 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package simple
import (
"fmt"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/uid"
"gonum.org/v1/gonum/graph/iterator"
)
var (
dg *DirectedGraph
_ graph.Graph = dg
_ graph.Directed = dg
_ graph.NodeAdder = dg
_ graph.NodeRemover = dg
_ graph.EdgeAdder = dg
_ graph.EdgeRemover = dg
)
// DirectedGraph implements a generalized directed graph.
type DirectedGraph struct {
nodes map[int64]graph.Node
from map[int64]map[int64]graph.Edge
to map[int64]map[int64]graph.Edge
nodeIDs uid.Set
}
// NewDirectedGraph returns a DirectedGraph.
func NewDirectedGraph() *DirectedGraph {
return &DirectedGraph{
nodes: make(map[int64]graph.Node),
from: make(map[int64]map[int64]graph.Edge),
to: make(map[int64]map[int64]graph.Edge),
nodeIDs: uid.NewSet(),
}
}
// AddNode adds n to the graph. It panics if the added node ID matches an existing node ID.
func (g *DirectedGraph) AddNode(n graph.Node) {
if _, exists := g.nodes[n.ID()]; exists {
panic(fmt.Sprintf("simple: node ID collision: %d", n.ID()))
}
g.nodes[n.ID()] = n
g.from[n.ID()] = make(map[int64]graph.Edge)
g.to[n.ID()] = make(map[int64]graph.Edge)
g.nodeIDs.Use(n.ID())
}
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g *DirectedGraph) Edge(uid, vid int64) graph.Edge {
edge, ok := g.from[uid][vid]
if !ok {
return nil
}
return edge
}
// Edges returns all the edges in the graph.
func (g *DirectedGraph) Edges() graph.Edges {
var edges []graph.Edge
for _, u := range g.nodes {
for _, e := range g.from[u.ID()] {
edges = append(edges, e)
}
}
if len(edges) == 0 {
return graph.Empty
}
return iterator.NewOrderedEdges(edges)
}
// From returns all nodes in g that can be reached directly from n.
func (g *DirectedGraph) From(id int64) graph.Nodes {
if _, ok := g.from[id]; !ok {
return graph.Empty
}
from := make([]graph.Node, len(g.from[id]))
i := 0
for vid := range g.from[id] {
from[i] = g.nodes[vid]
i++
}
if len(from) == 0 {
return graph.Empty
}
return iterator.NewOrderedNodes(from)
}
// HasEdgeBetween returns whether an edge exists between nodes x and y without
// considering direction.
func (g *DirectedGraph) HasEdgeBetween(xid, yid int64) bool {
if _, ok := g.from[xid][yid]; ok {
return true
}
_, ok := g.from[yid][xid]
return ok
}
// HasEdgeFromTo returns whether an edge exists in the graph from u to v.
func (g *DirectedGraph) HasEdgeFromTo(uid, vid int64) bool {
if _, ok := g.from[uid][vid]; !ok {
return false
}
return true
}
// NewEdge returns a new Edge from the source to the destination node.
func (g *DirectedGraph) NewEdge(from, to graph.Node) graph.Edge {
return &Edge{F: from, T: to}
}
// NewNode returns a new unique Node to be added to g. The Node's ID does
// not become valid in g until the Node is added to g.
func (g *DirectedGraph) NewNode() graph.Node {
if len(g.nodes) == 0 {
return Node(0)
}
if int64(len(g.nodes)) == uid.Max {
panic("simple: cannot allocate node: no slot")
}
return Node(g.nodeIDs.NewID())
}
// Node returns the node with the given ID if it exists in the graph,
// and nil otherwise.
func (g *DirectedGraph) Node(id int64) graph.Node {
return g.nodes[id]
}
// Nodes returns all the nodes in the graph.
func (g *DirectedGraph) Nodes() graph.Nodes {
if len(g.nodes) == 0 {
return graph.Empty
}
nodes := make([]graph.Node, len(g.nodes))
i := 0
for _, n := range g.nodes {
nodes[i] = n
i++
}
return iterator.NewOrderedNodes(nodes)
}
// RemoveEdge removes the edge with the given end point IDs from the graph, leaving the terminal
// nodes. If the edge does not exist it is a no-op.
func (g *DirectedGraph) RemoveEdge(fid, tid int64) {
if _, ok := g.nodes[fid]; !ok {
return
}
if _, ok := g.nodes[tid]; !ok {
return
}
delete(g.from[fid], tid)
delete(g.to[tid], fid)
}
// RemoveNode removes the node with the given ID from the graph, as well as any edges attached
// to it. If the node is not in the graph it is a no-op.
func (g *DirectedGraph) RemoveNode(id int64) {
if _, ok := g.nodes[id]; !ok {
return
}
delete(g.nodes, id)
for from := range g.from[id] {
delete(g.to[from], id)
}
delete(g.from, id)
for to := range g.to[id] {
delete(g.from[to], id)
}
delete(g.to, id)
g.nodeIDs.Release(id)
}
// SetEdge adds e, an edge from one node to another. If the nodes do not exist, they are added
// and are set to the nodes of the edge otherwise.
// It will panic if the IDs of the e.From and e.To are equal.
func (g *DirectedGraph) SetEdge(e graph.Edge) {
var (
from = e.From()
fid = from.ID()
to = e.To()
tid = to.ID()
)
if fid == tid {
panic("simple: adding self edge")
}
if _, ok := g.nodes[fid]; !ok {
g.AddNode(from)
} else {
g.nodes[fid] = from
}
if _, ok := g.nodes[tid]; !ok {
g.AddNode(to)
} else {
g.nodes[tid] = to
}
g.from[fid][tid] = e
g.to[tid][fid] = e
}
// To returns all nodes in g that can reach directly to n.
func (g *DirectedGraph) To(id int64) graph.Nodes {
if _, ok := g.from[id]; !ok {
return graph.Empty
}
to := make([]graph.Node, len(g.to[id]))
i := 0
for uid := range g.to[id] {
to[i] = g.nodes[uid]
i++
}
if len(to) == 0 {
return graph.Empty
}
return iterator.NewOrderedNodes(to)
}

9
vendor/gonum.org/v1/gonum/graph/simple/doc.go generated vendored Normal file
View File

@@ -0,0 +1,9 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package simple provides a suite of simple graph implementations satisfying
// the gonum/graph interfaces.
//
// All types in simple return the graph.Empty value for empty iterators.
package simple // import "gonum.org/v1/gonum/graph/simple"

72
vendor/gonum.org/v1/gonum/graph/simple/simple.go generated vendored Normal file
View File

@@ -0,0 +1,72 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package simple
import (
"math"
"gonum.org/v1/gonum/graph"
)
// Node is a simple graph node.
type Node int64
// ID returns the ID number of the node.
func (n Node) ID() int64 {
return int64(n)
}
func newSimpleNode(id int) graph.Node {
return Node(id)
}
// Edge is a simple graph edge.
type Edge struct {
F, T graph.Node
}
// From returns the from-node of the edge.
func (e Edge) From() graph.Node { return e.F }
// To returns the to-node of the edge.
func (e Edge) To() graph.Node { return e.T }
// ReversedLine returns a new Edge with the F and T fields
// swapped.
func (e Edge) ReversedEdge() graph.Edge { return Edge{F: e.T, T: e.F} }
// WeightedEdge is a simple weighted graph edge.
type WeightedEdge struct {
F, T graph.Node
W float64
}
// From returns the from-node of the edge.
func (e WeightedEdge) From() graph.Node { return e.F }
// To returns the to-node of the edge.
func (e WeightedEdge) To() graph.Node { return e.T }
// ReversedLine returns a new Edge with the F and T fields
// swapped. The weight of the new Edge is the same as
// the weight of the receiver.
func (e WeightedEdge) ReversedEdge() graph.Edge { return WeightedEdge{F: e.T, T: e.F, W: e.W} }
// Weight returns the weight of the edge.
func (e WeightedEdge) Weight() float64 { return e.W }
// isSame returns whether two float64 values are the same where NaN values
// are equalable.
func isSame(a, b float64) bool {
return a == b || (math.IsNaN(a) && math.IsNaN(b))
}
type edgeSetter interface {
SetEdge(e graph.Edge)
}
type weightedEdgeSetter interface {
SetWeightedEdge(e graph.WeightedEdge)
}

216
vendor/gonum.org/v1/gonum/graph/simple/undirected.go generated vendored Normal file
View File

@@ -0,0 +1,216 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package simple
import (
"fmt"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/uid"
"gonum.org/v1/gonum/graph/iterator"
)
var (
ug *UndirectedGraph
_ graph.Graph = ug
_ graph.Undirected = ug
_ graph.NodeAdder = ug
_ graph.NodeRemover = ug
_ graph.EdgeAdder = ug
_ graph.EdgeRemover = ug
)
// UndirectedGraph implements a generalized undirected graph.
type UndirectedGraph struct {
nodes map[int64]graph.Node
edges map[int64]map[int64]graph.Edge
nodeIDs uid.Set
}
// NewUndirectedGraph returns an UndirectedGraph.
func NewUndirectedGraph() *UndirectedGraph {
return &UndirectedGraph{
nodes: make(map[int64]graph.Node),
edges: make(map[int64]map[int64]graph.Edge),
nodeIDs: uid.NewSet(),
}
}
// AddNode adds n to the graph. It panics if the added node ID matches an existing node ID.
func (g *UndirectedGraph) AddNode(n graph.Node) {
if _, exists := g.nodes[n.ID()]; exists {
panic(fmt.Sprintf("simple: node ID collision: %d", n.ID()))
}
g.nodes[n.ID()] = n
g.edges[n.ID()] = make(map[int64]graph.Edge)
g.nodeIDs.Use(n.ID())
}
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g *UndirectedGraph) Edge(uid, vid int64) graph.Edge {
return g.EdgeBetween(uid, vid)
}
// EdgeBetween returns the edge between nodes x and y.
func (g *UndirectedGraph) EdgeBetween(xid, yid int64) graph.Edge {
edge, ok := g.edges[xid][yid]
if !ok {
return nil
}
if edge.From().ID() == xid {
return edge
}
return edge.ReversedEdge()
}
// Edges returns all the edges in the graph.
func (g *UndirectedGraph) Edges() graph.Edges {
if len(g.edges) == 0 {
return graph.Empty
}
var edges []graph.Edge
seen := make(map[[2]int64]struct{})
for _, u := range g.edges {
for _, e := range u {
uid := e.From().ID()
vid := e.To().ID()
if _, ok := seen[[2]int64{uid, vid}]; ok {
continue
}
seen[[2]int64{uid, vid}] = struct{}{}
seen[[2]int64{vid, uid}] = struct{}{}
edges = append(edges, e)
}
}
if len(edges) == 0 {
return graph.Empty
}
return iterator.NewOrderedEdges(edges)
}
// From returns all nodes in g that can be reached directly from n.
func (g *UndirectedGraph) From(id int64) graph.Nodes {
if _, ok := g.nodes[id]; !ok {
return graph.Empty
}
nodes := make([]graph.Node, len(g.edges[id]))
i := 0
for from := range g.edges[id] {
nodes[i] = g.nodes[from]
i++
}
if len(nodes) == 0 {
return graph.Empty
}
return iterator.NewOrderedNodes(nodes)
}
// HasEdgeBetween returns whether an edge exists between nodes x and y.
func (g *UndirectedGraph) HasEdgeBetween(xid, yid int64) bool {
_, ok := g.edges[xid][yid]
return ok
}
// NewEdge returns a new Edge from the source to the destination node.
func (g *UndirectedGraph) NewEdge(from, to graph.Node) graph.Edge {
return &Edge{F: from, T: to}
}
// NewNode returns a new unique Node to be added to g. The Node's ID does
// not become valid in g until the Node is added to g.
func (g *UndirectedGraph) NewNode() graph.Node {
if len(g.nodes) == 0 {
return Node(0)
}
if int64(len(g.nodes)) == uid.Max {
panic("simple: cannot allocate node: no slot")
}
return Node(g.nodeIDs.NewID())
}
// Node returns the node with the given ID if it exists in the graph,
// and nil otherwise.
func (g *UndirectedGraph) Node(id int64) graph.Node {
return g.nodes[id]
}
// Nodes returns all the nodes in the graph.
func (g *UndirectedGraph) Nodes() graph.Nodes {
if len(g.nodes) == 0 {
return graph.Empty
}
nodes := make([]graph.Node, len(g.nodes))
i := 0
for _, n := range g.nodes {
nodes[i] = n
i++
}
return iterator.NewOrderedNodes(nodes)
}
// RemoveEdge removes the edge with the given end IDs from the graph, leaving the terminal nodes.
// If the edge does not exist it is a no-op.
func (g *UndirectedGraph) RemoveEdge(fid, tid int64) {
if _, ok := g.nodes[fid]; !ok {
return
}
if _, ok := g.nodes[tid]; !ok {
return
}
delete(g.edges[fid], tid)
delete(g.edges[tid], fid)
}
// RemoveNode removes the node with the given ID from the graph, as well as any edges attached
// to it. If the node is not in the graph it is a no-op.
func (g *UndirectedGraph) RemoveNode(id int64) {
if _, ok := g.nodes[id]; !ok {
return
}
delete(g.nodes, id)
for from := range g.edges[id] {
delete(g.edges[from], id)
}
delete(g.edges, id)
g.nodeIDs.Release(id)
}
// SetEdge adds e, an edge from one node to another. If the nodes do not exist, they are added
// and are set to the nodes of the edge otherwise.
// It will panic if the IDs of the e.From and e.To are equal.
func (g *UndirectedGraph) SetEdge(e graph.Edge) {
var (
from = e.From()
fid = from.ID()
to = e.To()
tid = to.ID()
)
if fid == tid {
panic("simple: adding self edge")
}
if _, ok := g.nodes[fid]; !ok {
g.AddNode(from)
} else {
g.nodes[fid] = from
}
if _, ok := g.nodes[tid]; !ok {
g.AddNode(to)
} else {
g.nodes[tid] = to
}
g.edges[fid][tid] = e
g.edges[tid][fid] = e
}

View File

@@ -0,0 +1,279 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package simple
import (
"fmt"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/uid"
"gonum.org/v1/gonum/graph/iterator"
)
var (
wdg *WeightedDirectedGraph
_ graph.Graph = wdg
_ graph.Weighted = wdg
_ graph.Directed = wdg
_ graph.WeightedDirected = wdg
_ graph.NodeAdder = wdg
_ graph.NodeRemover = wdg
_ graph.WeightedEdgeAdder = wdg
_ graph.EdgeRemover = wdg
)
// WeightedDirectedGraph implements a generalized weighted directed graph.
type WeightedDirectedGraph struct {
nodes map[int64]graph.Node
from map[int64]map[int64]graph.WeightedEdge
to map[int64]map[int64]graph.WeightedEdge
self, absent float64
nodeIDs uid.Set
}
// NewWeightedDirectedGraph returns a WeightedDirectedGraph with the specified self and absent
// edge weight values.
func NewWeightedDirectedGraph(self, absent float64) *WeightedDirectedGraph {
return &WeightedDirectedGraph{
nodes: make(map[int64]graph.Node),
from: make(map[int64]map[int64]graph.WeightedEdge),
to: make(map[int64]map[int64]graph.WeightedEdge),
self: self,
absent: absent,
nodeIDs: uid.NewSet(),
}
}
// AddNode adds n to the graph. It panics if the added node ID matches an existing node ID.
func (g *WeightedDirectedGraph) AddNode(n graph.Node) {
if _, exists := g.nodes[n.ID()]; exists {
panic(fmt.Sprintf("simple: node ID collision: %d", n.ID()))
}
g.nodes[n.ID()] = n
g.from[n.ID()] = make(map[int64]graph.WeightedEdge)
g.to[n.ID()] = make(map[int64]graph.WeightedEdge)
g.nodeIDs.Use(n.ID())
}
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g *WeightedDirectedGraph) Edge(uid, vid int64) graph.Edge {
return g.WeightedEdge(uid, vid)
}
// Edges returns all the edges in the graph.
func (g *WeightedDirectedGraph) Edges() graph.Edges {
var edges []graph.Edge
for _, u := range g.nodes {
for _, e := range g.from[u.ID()] {
edges = append(edges, e)
}
}
if len(edges) == 0 {
return graph.Empty
}
return iterator.NewOrderedEdges(edges)
}
// From returns all nodes in g that can be reached directly from n.
func (g *WeightedDirectedGraph) From(id int64) graph.Nodes {
if _, ok := g.from[id]; !ok {
return graph.Empty
}
from := make([]graph.Node, len(g.from[id]))
i := 0
for vid := range g.from[id] {
from[i] = g.nodes[vid]
i++
}
if len(from) == 0 {
return graph.Empty
}
return iterator.NewOrderedNodes(from)
}
// HasEdgeBetween returns whether an edge exists between nodes x and y without
// considering direction.
func (g *WeightedDirectedGraph) HasEdgeBetween(xid, yid int64) bool {
if _, ok := g.from[xid][yid]; ok {
return true
}
_, ok := g.from[yid][xid]
return ok
}
// HasEdgeFromTo returns whether an edge exists in the graph from u to v.
func (g *WeightedDirectedGraph) HasEdgeFromTo(uid, vid int64) bool {
if _, ok := g.from[uid][vid]; !ok {
return false
}
return true
}
// NewNode returns a new unique Node to be added to g. The Node's ID does
// not become valid in g until the Node is added to g.
func (g *WeightedDirectedGraph) NewNode() graph.Node {
if len(g.nodes) == 0 {
return Node(0)
}
if int64(len(g.nodes)) == uid.Max {
panic("simple: cannot allocate node: no slot")
}
return Node(g.nodeIDs.NewID())
}
// NewWeightedEdge returns a new weighted edge from the source to the destination node.
func (g *WeightedDirectedGraph) NewWeightedEdge(from, to graph.Node, weight float64) graph.WeightedEdge {
return &WeightedEdge{F: from, T: to, W: weight}
}
// Node returns the node with the given ID if it exists in the graph,
// and nil otherwise.
func (g *WeightedDirectedGraph) Node(id int64) graph.Node {
return g.nodes[id]
}
// Nodes returns all the nodes in the graph.
func (g *WeightedDirectedGraph) Nodes() graph.Nodes {
if len(g.from) == 0 {
return graph.Empty
}
nodes := make([]graph.Node, len(g.nodes))
i := 0
for _, n := range g.nodes {
nodes[i] = n
i++
}
return iterator.NewOrderedNodes(nodes)
}
// RemoveEdge removes the edge with the given end point IDs from the graph, leaving the terminal
// nodes. If the edge does not exist it is a no-op.
func (g *WeightedDirectedGraph) RemoveEdge(fid, tid int64) {
if _, ok := g.nodes[fid]; !ok {
return
}
if _, ok := g.nodes[tid]; !ok {
return
}
delete(g.from[fid], tid)
delete(g.to[tid], fid)
}
// RemoveNode removes the node with the given ID from the graph, as well as any edges attached
// to it. If the node is not in the graph it is a no-op.
func (g *WeightedDirectedGraph) RemoveNode(id int64) {
if _, ok := g.nodes[id]; !ok {
return
}
delete(g.nodes, id)
for from := range g.from[id] {
delete(g.to[from], id)
}
delete(g.from, id)
for to := range g.to[id] {
delete(g.from[to], id)
}
delete(g.to, id)
g.nodeIDs.Release(id)
}
// SetWeightedEdge adds a weighted edge from one node to another. If the nodes do not exist, they are added
// and are set to the nodes of the edge otherwise.
// It will panic if the IDs of the e.From and e.To are equal.
func (g *WeightedDirectedGraph) SetWeightedEdge(e graph.WeightedEdge) {
var (
from = e.From()
fid = from.ID()
to = e.To()
tid = to.ID()
)
if fid == tid {
panic("simple: adding self edge")
}
if _, ok := g.nodes[fid]; !ok {
g.AddNode(from)
} else {
g.nodes[fid] = from
}
if _, ok := g.nodes[tid]; !ok {
g.AddNode(to)
} else {
g.nodes[tid] = to
}
g.from[fid][tid] = e
g.to[tid][fid] = e
}
// To returns all nodes in g that can reach directly to n.
func (g *WeightedDirectedGraph) To(id int64) graph.Nodes {
if _, ok := g.from[id]; !ok {
return graph.Empty
}
to := make([]graph.Node, len(g.to[id]))
i := 0
for uid := range g.to[id] {
to[i] = g.nodes[uid]
i++
}
if len(to) == 0 {
return graph.Empty
}
return iterator.NewOrderedNodes(to)
}
// Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge.
// If x and y are the same node or there is no joining edge between the two nodes the weight
// value returned is either the graph's absent or self value. Weight returns true if an edge
// exists between x and y or if x and y have the same ID, false otherwise.
func (g *WeightedDirectedGraph) Weight(xid, yid int64) (w float64, ok bool) {
if xid == yid {
return g.self, true
}
if to, ok := g.from[xid]; ok {
if e, ok := to[yid]; ok {
return e.Weight(), true
}
}
return g.absent, false
}
// WeightedEdge returns the weighted edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g *WeightedDirectedGraph) WeightedEdge(uid, vid int64) graph.WeightedEdge {
edge, ok := g.from[uid][vid]
if !ok {
return nil
}
return edge
}
// WeightedEdges returns all the weighted edges in the graph.
func (g *WeightedDirectedGraph) WeightedEdges() graph.WeightedEdges {
var edges []graph.WeightedEdge
for _, u := range g.nodes {
for _, e := range g.from[u.ID()] {
edges = append(edges, e)
}
}
if len(edges) == 0 {
return graph.Empty
}
return iterator.NewOrderedWeightedEdges(edges)
}

View File

@@ -0,0 +1,273 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package simple
import (
"fmt"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/uid"
"gonum.org/v1/gonum/graph/iterator"
)
var (
wug *WeightedUndirectedGraph
_ graph.Graph = wug
_ graph.Weighted = wug
_ graph.Undirected = wug
_ graph.WeightedUndirected = wug
_ graph.NodeAdder = wug
_ graph.NodeRemover = wug
_ graph.WeightedEdgeAdder = wug
_ graph.EdgeRemover = wug
)
// WeightedUndirectedGraph implements a generalized weighted undirected graph.
type WeightedUndirectedGraph struct {
nodes map[int64]graph.Node
edges map[int64]map[int64]graph.WeightedEdge
self, absent float64
nodeIDs uid.Set
}
// NewWeightedUndirectedGraph returns an WeightedUndirectedGraph with the specified self and absent
// edge weight values.
func NewWeightedUndirectedGraph(self, absent float64) *WeightedUndirectedGraph {
return &WeightedUndirectedGraph{
nodes: make(map[int64]graph.Node),
edges: make(map[int64]map[int64]graph.WeightedEdge),
self: self,
absent: absent,
nodeIDs: uid.NewSet(),
}
}
// AddNode adds n to the graph. It panics if the added node ID matches an existing node ID.
func (g *WeightedUndirectedGraph) AddNode(n graph.Node) {
if _, exists := g.nodes[n.ID()]; exists {
panic(fmt.Sprintf("simple: node ID collision: %d", n.ID()))
}
g.nodes[n.ID()] = n
g.edges[n.ID()] = make(map[int64]graph.WeightedEdge)
g.nodeIDs.Use(n.ID())
}
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g *WeightedUndirectedGraph) Edge(uid, vid int64) graph.Edge {
return g.WeightedEdgeBetween(uid, vid)
}
// EdgeBetween returns the edge between nodes x and y.
func (g *WeightedUndirectedGraph) EdgeBetween(xid, yid int64) graph.Edge {
return g.WeightedEdgeBetween(xid, yid)
}
// Edges returns all the edges in the graph.
func (g *WeightedUndirectedGraph) Edges() graph.Edges {
if len(g.edges) == 0 {
return graph.Empty
}
var edges []graph.Edge
seen := make(map[[2]int64]struct{})
for _, u := range g.edges {
for _, e := range u {
uid := e.From().ID()
vid := e.To().ID()
if _, ok := seen[[2]int64{uid, vid}]; ok {
continue
}
seen[[2]int64{uid, vid}] = struct{}{}
seen[[2]int64{vid, uid}] = struct{}{}
edges = append(edges, e)
}
}
if len(edges) == 0 {
return graph.Empty
}
return iterator.NewOrderedEdges(edges)
}
// From returns all nodes in g that can be reached directly from n.
func (g *WeightedUndirectedGraph) From(id int64) graph.Nodes {
if _, ok := g.nodes[id]; !ok {
return graph.Empty
}
nodes := make([]graph.Node, len(g.edges[id]))
i := 0
for from := range g.edges[id] {
nodes[i] = g.nodes[from]
i++
}
if len(nodes) == 0 {
return graph.Empty
}
return iterator.NewOrderedNodes(nodes)
}
// HasEdgeBetween returns whether an edge exists between nodes x and y.
func (g *WeightedUndirectedGraph) HasEdgeBetween(xid, yid int64) bool {
_, ok := g.edges[xid][yid]
return ok
}
// NewNode returns a new unique Node to be added to g. The Node's ID does
// not become valid in g until the Node is added to g.
func (g *WeightedUndirectedGraph) NewNode() graph.Node {
if len(g.nodes) == 0 {
return Node(0)
}
if int64(len(g.nodes)) == uid.Max {
panic("simple: cannot allocate node: no slot")
}
return Node(g.nodeIDs.NewID())
}
// NewWeightedEdge returns a new weighted edge from the source to the destination node.
func (g *WeightedUndirectedGraph) NewWeightedEdge(from, to graph.Node, weight float64) graph.WeightedEdge {
return &WeightedEdge{F: from, T: to, W: weight}
}
// Node returns the node with the given ID if it exists in the graph,
// and nil otherwise.
func (g *WeightedUndirectedGraph) Node(id int64) graph.Node {
return g.nodes[id]
}
// Nodes returns all the nodes in the graph.
func (g *WeightedUndirectedGraph) Nodes() graph.Nodes {
if len(g.nodes) == 0 {
return graph.Empty
}
nodes := make([]graph.Node, len(g.nodes))
i := 0
for _, n := range g.nodes {
nodes[i] = n
i++
}
return iterator.NewOrderedNodes(nodes)
}
// RemoveEdge removes the edge with the given end point IDs from the graph, leaving the terminal
// nodes. If the edge does not exist it is a no-op.
func (g *WeightedUndirectedGraph) RemoveEdge(fid, tid int64) {
if _, ok := g.nodes[fid]; !ok {
return
}
if _, ok := g.nodes[tid]; !ok {
return
}
delete(g.edges[fid], tid)
delete(g.edges[tid], fid)
}
// RemoveNode removes the node with the given ID from the graph, as well as any edges attached
// to it. If the node is not in the graph it is a no-op.
func (g *WeightedUndirectedGraph) RemoveNode(id int64) {
if _, ok := g.nodes[id]; !ok {
return
}
delete(g.nodes, id)
for from := range g.edges[id] {
delete(g.edges[from], id)
}
delete(g.edges, id)
g.nodeIDs.Release(id)
}
// SetWeightedEdge adds a weighted edge from one node to another. If the nodes do not exist, they are added
// and are set to the nodes of the edge otherwise.
// It will panic if the IDs of the e.From and e.To are equal.
func (g *WeightedUndirectedGraph) SetWeightedEdge(e graph.WeightedEdge) {
var (
from = e.From()
fid = from.ID()
to = e.To()
tid = to.ID()
)
if fid == tid {
panic("simple: adding self edge")
}
if _, ok := g.nodes[fid]; !ok {
g.AddNode(from)
} else {
g.nodes[fid] = from
}
if _, ok := g.nodes[tid]; !ok {
g.AddNode(to)
} else {
g.nodes[tid] = to
}
g.edges[fid][tid] = e
g.edges[tid][fid] = e
}
// Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge.
// If x and y are the same node or there is no joining edge between the two nodes the weight
// value returned is either the graph's absent or self value. Weight returns true if an edge
// exists between x and y or if x and y have the same ID, false otherwise.
func (g *WeightedUndirectedGraph) Weight(xid, yid int64) (w float64, ok bool) {
if xid == yid {
return g.self, true
}
if n, ok := g.edges[xid]; ok {
if e, ok := n[yid]; ok {
return e.Weight(), true
}
}
return g.absent, false
}
// WeightedEdge returns the weighted edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g *WeightedUndirectedGraph) WeightedEdge(uid, vid int64) graph.WeightedEdge {
return g.WeightedEdgeBetween(uid, vid)
}
// WeightedEdgeBetween returns the weighted edge between nodes x and y.
func (g *WeightedUndirectedGraph) WeightedEdgeBetween(xid, yid int64) graph.WeightedEdge {
edge, ok := g.edges[xid][yid]
if !ok {
return nil
}
if edge.From().ID() == xid {
return edge
}
return edge.ReversedEdge().(graph.WeightedEdge)
}
// WeightedEdges returns all the weighted edges in the graph.
func (g *WeightedUndirectedGraph) WeightedEdges() graph.WeightedEdges {
var edges []graph.WeightedEdge
seen := make(map[[2]int64]struct{})
for _, u := range g.edges {
for _, e := range u {
uid := e.From().ID()
vid := e.To().ID()
if _, ok := seen[[2]int64{uid, vid}]; ok {
continue
}
seen[[2]int64{uid, vid}] = struct{}{}
seen[[2]int64{vid, uid}] = struct{}{}
edges = append(edges, e)
}
}
if len(edges) == 0 {
return graph.Empty
}
return iterator.NewOrderedWeightedEdges(edges)
}

250
vendor/gonum.org/v1/gonum/graph/topo/bron_kerbosch.go generated vendored Normal file
View File

@@ -0,0 +1,250 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package topo
import (
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/ordered"
"gonum.org/v1/gonum/graph/internal/set"
)
// DegeneracyOrdering returns the degeneracy ordering and the k-cores of
// the undirected graph g.
func DegeneracyOrdering(g graph.Undirected) (order []graph.Node, cores [][]graph.Node) {
order, offsets := degeneracyOrdering(g)
ordered.Reverse(order)
cores = make([][]graph.Node, len(offsets))
offset := len(order)
for i, n := range offsets {
cores[i] = order[offset-n : offset]
offset -= n
}
return order, cores
}
// KCore returns the k-core of the undirected graph g with nodes in an
// optimal ordering for the coloring number.
func KCore(k int, g graph.Undirected) []graph.Node {
order, offsets := degeneracyOrdering(g)
var offset int
for _, n := range offsets[:k] {
offset += n
}
core := make([]graph.Node, len(order)-offset)
copy(core, order[offset:])
return core
}
// degeneracyOrdering is the common code for DegeneracyOrdering and KCore. It
// returns l, the nodes of g in optimal ordering for coloring number and
// s, a set of relative offsets into l for each k-core, where k is an index
// into s.
func degeneracyOrdering(g graph.Undirected) (l []graph.Node, s []int) {
nodes := graph.NodesOf(g.Nodes())
// The algorithm used here is essentially as described at
// http://en.wikipedia.org/w/index.php?title=Degeneracy_%28graph_theory%29&oldid=640308710
// Initialize an output list L in return parameters.
// Compute a number d_v for each vertex v in G,
// the number of neighbors of v that are not already in L.
// Initially, these numbers are just the degrees of the vertices.
dv := make(map[int64]int, len(nodes))
var (
maxDegree int
neighbours = make(map[int64][]graph.Node)
)
for _, n := range nodes {
id := n.ID()
adj := graph.NodesOf(g.From(id))
neighbours[id] = adj
dv[id] = len(adj)
if len(adj) > maxDegree {
maxDegree = len(adj)
}
}
// Initialize an array D such that D[i] contains a list of the
// vertices v that are not already in L for which d_v = i.
d := make([][]graph.Node, maxDegree+1)
for _, n := range nodes {
deg := dv[n.ID()]
d[deg] = append(d[deg], n)
}
// Initialize k to 0.
k := 0
// Repeat n times:
s = []int{0}
for range nodes {
// Scan the array cells D[0], D[1], ... until
// finding an i for which D[i] is nonempty.
var (
i int
di []graph.Node
)
for i, di = range d {
if len(di) != 0 {
break
}
}
// Set k to max(k,i).
if i > k {
k = i
s = append(s, make([]int, k-len(s)+1)...)
}
// Select a vertex v from D[i]. Add v to the
// beginning of L and remove it from D[i].
var v graph.Node
v, d[i] = di[len(di)-1], di[:len(di)-1]
l = append(l, v)
s[k]++
delete(dv, v.ID())
// For each neighbor w of v not already in L,
// subtract one from d_w and move w to the
// cell of D corresponding to the new value of d_w.
for _, w := range neighbours[v.ID()] {
dw, ok := dv[w.ID()]
if !ok {
continue
}
for i, n := range d[dw] {
if n.ID() == w.ID() {
d[dw][i], d[dw] = d[dw][len(d[dw])-1], d[dw][:len(d[dw])-1]
dw--
d[dw] = append(d[dw], w)
break
}
}
dv[w.ID()] = dw
}
}
return l, s
}
// BronKerbosch returns the set of maximal cliques of the undirected graph g.
func BronKerbosch(g graph.Undirected) [][]graph.Node {
nodes := graph.NodesOf(g.Nodes())
// The algorithm used here is essentially BronKerbosch3 as described at
// http://en.wikipedia.org/w/index.php?title=Bron%E2%80%93Kerbosch_algorithm&oldid=656805858
p := set.NewNodesSize(len(nodes))
for _, n := range nodes {
p.Add(n)
}
x := set.NewNodes()
var bk bronKerbosch
order, _ := degeneracyOrdering(g)
ordered.Reverse(order)
for _, v := range order {
neighbours := graph.NodesOf(g.From(v.ID()))
nv := set.NewNodesSize(len(neighbours))
for _, n := range neighbours {
nv.Add(n)
}
bk.maximalCliquePivot(g, []graph.Node{v}, set.IntersectionOfNodes(p, nv), set.IntersectionOfNodes(x, nv))
p.Remove(v)
x.Add(v)
}
return bk
}
type bronKerbosch [][]graph.Node
func (bk *bronKerbosch) maximalCliquePivot(g graph.Undirected, r []graph.Node, p, x set.Nodes) {
if len(p) == 0 && len(x) == 0 {
*bk = append(*bk, r)
return
}
neighbours := bk.choosePivotFrom(g, p, x)
nu := set.NewNodesSize(len(neighbours))
for _, n := range neighbours {
nu.Add(n)
}
for _, v := range p {
if nu.Has(v) {
continue
}
vid := v.ID()
neighbours := graph.NodesOf(g.From(vid))
nv := set.NewNodesSize(len(neighbours))
for _, n := range neighbours {
nv.Add(n)
}
var found bool
for _, n := range r {
if n.ID() == vid {
found = true
break
}
}
var sr []graph.Node
if !found {
sr = append(r[:len(r):len(r)], v)
}
bk.maximalCliquePivot(g, sr, set.IntersectionOfNodes(p, nv), set.IntersectionOfNodes(x, nv))
p.Remove(v)
x.Add(v)
}
}
func (*bronKerbosch) choosePivotFrom(g graph.Undirected, p, x set.Nodes) (neighbors []graph.Node) {
// TODO(kortschak): Investigate the impact of pivot choice that maximises
// |p ⋂ neighbours(u)| as a function of input size. Until then, leave as
// compile time option.
if !tomitaTanakaTakahashi {
for _, n := range p {
return graph.NodesOf(g.From(n.ID()))
}
for _, n := range x {
return graph.NodesOf(g.From(n.ID()))
}
panic("bronKerbosch: empty set")
}
var (
max = -1
pivot graph.Node
)
maxNeighbors := func(s set.Nodes) {
outer:
for _, u := range s {
nb := graph.NodesOf(g.From(u.ID()))
c := len(nb)
if c <= max {
continue
}
for n := range nb {
if _, ok := p[int64(n)]; ok {
continue
}
c--
if c <= max {
continue outer
}
}
max = c
pivot = u
neighbors = nb
}
}
maxNeighbors(p)
maxNeighbors(x)
if pivot == nil {
panic("bronKerbosch: empty set")
}
return neighbors
}

111
vendor/gonum.org/v1/gonum/graph/topo/clique_graph.go generated vendored Normal file
View File

@@ -0,0 +1,111 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package topo
import (
"sort"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/ordered"
"gonum.org/v1/gonum/graph/internal/set"
)
// Builder is a pure topological graph construction type.
type Builder interface {
AddNode(graph.Node)
SetEdge(graph.Edge)
}
// CliqueGraph builds the clique graph of g in dst using Clique and CliqueGraphEdge
// nodes and edges. The nodes returned by calls to Nodes on the nodes and edges of
// the constructed graph are the cliques and the common nodes between cliques
// respectively. The dst graph is not cleared.
func CliqueGraph(dst Builder, g graph.Undirected) {
cliques := BronKerbosch(g)
// Construct a consistent view of cliques in g. Sorting costs
// us a little, but not as much as the cliques themselves.
for _, c := range cliques {
sort.Sort(ordered.ByID(c))
}
sort.Sort(ordered.BySliceIDs(cliques))
cliqueNodes := make(cliqueNodeSets, len(cliques))
for id, c := range cliques {
s := set.NewNodesSize(len(c))
for _, n := range c {
s.Add(n)
}
ns := &nodeSet{Clique: Clique{id: int64(id), nodes: c}, nodes: s}
dst.AddNode(ns.Clique)
for _, n := range c {
nid := n.ID()
cliqueNodes[nid] = append(cliqueNodes[nid], ns)
}
}
for _, cliques := range cliqueNodes {
for i, uc := range cliques {
for _, vc := range cliques[i+1:] {
// Retain the nodes that contribute to the
// edge between the cliques.
var edgeNodes []graph.Node
switch 1 {
case len(uc.Clique.nodes):
edgeNodes = []graph.Node{uc.Clique.nodes[0]}
case len(vc.Clique.nodes):
edgeNodes = []graph.Node{vc.Clique.nodes[0]}
default:
for _, n := range set.IntersectionOfNodes(uc.nodes, vc.nodes) {
edgeNodes = append(edgeNodes, n)
}
sort.Sort(ordered.ByID(edgeNodes))
}
dst.SetEdge(CliqueGraphEdge{from: uc.Clique, to: vc.Clique, nodes: edgeNodes})
}
}
}
}
type cliqueNodeSets map[int64][]*nodeSet
type nodeSet struct {
Clique
nodes set.Nodes
}
// Clique is a node in a clique graph.
type Clique struct {
id int64
nodes []graph.Node
}
// ID returns the node ID.
func (n Clique) ID() int64 { return n.id }
// Nodes returns the nodes in the clique.
func (n Clique) Nodes() []graph.Node { return n.nodes }
// CliqueGraphEdge is an edge in a clique graph.
type CliqueGraphEdge struct {
from, to Clique
nodes []graph.Node
}
// From returns the from node of the edge.
func (e CliqueGraphEdge) From() graph.Node { return e.from }
// To returns the to node of the edge.
func (e CliqueGraphEdge) To() graph.Node { return e.to }
// ReversedEdge returns a new CliqueGraphEdge with
// the edge end points swapped. The nodes of the
// new edge are shared with the receiver.
func (e CliqueGraphEdge) ReversedEdge() graph.Edge { e.from, e.to = e.to, e.from; return e }
// Nodes returns the common nodes in the cliques of the underlying graph
// corresponding to the from and to nodes in the clique graph.
func (e CliqueGraphEdge) Nodes() []graph.Node { return e.nodes }

6
vendor/gonum.org/v1/gonum/graph/topo/doc.go generated vendored Normal file
View File

@@ -0,0 +1,6 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package topo provides graph topology analysis functions.
package topo // import "gonum.org/v1/gonum/graph/topo"

285
vendor/gonum.org/v1/gonum/graph/topo/johnson_cycles.go generated vendored Normal file
View File

@@ -0,0 +1,285 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package topo
import (
"sort"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/ordered"
"gonum.org/v1/gonum/graph/internal/set"
"gonum.org/v1/gonum/graph/iterator"
)
// johnson implements Johnson's "Finding all the elementary
// circuits of a directed graph" algorithm. SIAM J. Comput. 4(1):1975.
//
// Comments in the johnson methods are kept in sync with the comments
// and labels from the paper.
type johnson struct {
adjacent johnsonGraph // SCC adjacency list.
b []set.Ints // Johnson's "B-list".
blocked []bool
s int
stack []graph.Node
result [][]graph.Node
}
// DirectedCyclesIn returns the set of elementary cycles in the graph g.
func DirectedCyclesIn(g graph.Directed) [][]graph.Node {
jg := johnsonGraphFrom(g)
j := johnson{
adjacent: jg,
b: make([]set.Ints, len(jg.orig)),
blocked: make([]bool, len(jg.orig)),
}
// len(j.nodes) is the order of g.
for j.s < len(j.adjacent.orig)-1 {
// We use the previous SCC adjacency to reduce the work needed.
sccs := TarjanSCC(j.adjacent.subgraph(j.s))
// A_k = adjacency structure of strong component K with least
// vertex in subgraph of G induced by {s, s+1, ... ,n}.
j.adjacent = j.adjacent.sccSubGraph(sccs, 2) // Only allow SCCs with >= 2 vertices.
if j.adjacent.order() == 0 {
break
}
// s = least vertex in V_k
if s := j.adjacent.leastVertexIndex(); s < j.s {
j.s = s
}
for i, v := range j.adjacent.orig {
if !j.adjacent.nodes.Has(v.ID()) {
continue
}
if len(j.adjacent.succ[v.ID()]) > 0 {
j.blocked[i] = false
j.b[i] = make(set.Ints)
}
}
//L3:
_ = j.circuit(j.s)
j.s++
}
return j.result
}
// circuit is the CIRCUIT sub-procedure in the paper.
func (j *johnson) circuit(v int) bool {
f := false
n := j.adjacent.orig[v]
j.stack = append(j.stack, n)
j.blocked[v] = true
//L1:
for w := range j.adjacent.succ[n.ID()] {
w := j.adjacent.indexOf(w)
if w == j.s {
// Output circuit composed of stack followed by s.
r := make([]graph.Node, len(j.stack)+1)
copy(r, j.stack)
r[len(r)-1] = j.adjacent.orig[j.s]
j.result = append(j.result, r)
f = true
} else if !j.blocked[w] {
if j.circuit(w) {
f = true
}
}
}
//L2:
if f {
j.unblock(v)
} else {
for w := range j.adjacent.succ[n.ID()] {
j.b[j.adjacent.indexOf(w)].Add(v)
}
}
j.stack = j.stack[:len(j.stack)-1]
return f
}
// unblock is the UNBLOCK sub-procedure in the paper.
func (j *johnson) unblock(u int) {
j.blocked[u] = false
for w := range j.b[u] {
j.b[u].Remove(w)
if j.blocked[w] {
j.unblock(w)
}
}
}
// johnsonGraph is an edge list representation of a graph with helpers
// necessary for Johnson's algorithm
type johnsonGraph struct {
// Keep the original graph nodes and a
// look-up to into the non-sparse
// collection of potentially sparse IDs.
orig []graph.Node
index map[int64]int
nodes set.Int64s
succ map[int64]set.Int64s
}
// johnsonGraphFrom returns a deep copy of the graph g.
func johnsonGraphFrom(g graph.Directed) johnsonGraph {
nodes := graph.NodesOf(g.Nodes())
sort.Sort(ordered.ByID(nodes))
c := johnsonGraph{
orig: nodes,
index: make(map[int64]int, len(nodes)),
nodes: make(set.Int64s, len(nodes)),
succ: make(map[int64]set.Int64s),
}
for i, u := range nodes {
uid := u.ID()
c.index[uid] = i
for _, v := range graph.NodesOf(g.From(uid)) {
if c.succ[uid] == nil {
c.succ[uid] = make(set.Int64s)
c.nodes.Add(uid)
}
c.nodes.Add(v.ID())
c.succ[uid].Add(v.ID())
}
}
return c
}
// order returns the order of the graph.
func (g johnsonGraph) order() int { return g.nodes.Count() }
// indexOf returns the index of the retained node for the given node ID.
func (g johnsonGraph) indexOf(id int64) int {
return g.index[id]
}
// leastVertexIndex returns the index into orig of the least vertex.
func (g johnsonGraph) leastVertexIndex() int {
for _, v := range g.orig {
if g.nodes.Has(v.ID()) {
return g.indexOf(v.ID())
}
}
panic("johnsonCycles: empty set")
}
// subgraph returns a subgraph of g induced by {s, s+1, ... , n}. The
// subgraph is destructively generated in g.
func (g johnsonGraph) subgraph(s int) johnsonGraph {
sn := g.orig[s].ID()
for u, e := range g.succ {
if u < sn {
g.nodes.Remove(u)
delete(g.succ, u)
continue
}
for v := range e {
if v < sn {
g.succ[u].Remove(v)
}
}
}
return g
}
// sccSubGraph returns the graph of the tarjan's strongly connected
// components with each SCC containing at least min vertices.
// sccSubGraph returns nil if there is no SCC with at least min
// members.
func (g johnsonGraph) sccSubGraph(sccs [][]graph.Node, min int) johnsonGraph {
if len(g.nodes) == 0 {
g.nodes = nil
g.succ = nil
return g
}
sub := johnsonGraph{
orig: g.orig,
index: g.index,
nodes: make(set.Int64s),
succ: make(map[int64]set.Int64s),
}
var n int
for _, scc := range sccs {
if len(scc) < min {
continue
}
n++
for _, u := range scc {
for _, v := range scc {
if _, ok := g.succ[u.ID()][v.ID()]; ok {
if sub.succ[u.ID()] == nil {
sub.succ[u.ID()] = make(set.Int64s)
sub.nodes.Add(u.ID())
}
sub.nodes.Add(v.ID())
sub.succ[u.ID()].Add(v.ID())
}
}
}
}
if n == 0 {
g.nodes = nil
g.succ = nil
return g
}
return sub
}
// Nodes is required to satisfy Tarjan.
func (g johnsonGraph) Nodes() graph.Nodes {
n := make([]graph.Node, 0, len(g.nodes))
for id := range g.nodes {
n = append(n, johnsonGraphNode(id))
}
return iterator.NewOrderedNodes(n)
}
// Successors is required to satisfy Tarjan.
func (g johnsonGraph) From(id int64) graph.Nodes {
adj := g.succ[id]
if len(adj) == 0 {
return graph.Empty
}
succ := make([]graph.Node, 0, len(adj))
for id := range adj {
succ = append(succ, johnsonGraphNode(id))
}
return iterator.NewOrderedNodes(succ)
}
func (johnsonGraph) Has(int64) bool {
panic("topo: unintended use of johnsonGraph")
}
func (johnsonGraph) Node(int64) graph.Node {
panic("topo: unintended use of johnsonGraph")
}
func (johnsonGraph) HasEdgeBetween(_, _ int64) bool {
panic("topo: unintended use of johnsonGraph")
}
func (johnsonGraph) Edge(_, _ int64) graph.Edge {
panic("topo: unintended use of johnsonGraph")
}
func (johnsonGraph) HasEdgeFromTo(_, _ int64) bool {
panic("topo: unintended use of johnsonGraph")
}
func (johnsonGraph) To(int64) graph.Nodes {
panic("topo: unintended use of johnsonGraph")
}
type johnsonGraphNode int64
func (n johnsonGraphNode) ID() int64 { return int64(n) }

View File

@@ -0,0 +1,9 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !tomita
package topo
const tomitaTanakaTakahashi = false

83
vendor/gonum.org/v1/gonum/graph/topo/paton_cycles.go generated vendored Normal file
View File

@@ -0,0 +1,83 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package topo
import (
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/linear"
"gonum.org/v1/gonum/graph/internal/set"
)
// UndirectedCyclesIn returns a set of cycles that forms a cycle basis in the graph g.
// Any cycle in g can be constructed as a symmetric difference of its elements.
func UndirectedCyclesIn(g graph.Undirected) [][]graph.Node {
// From "An algorithm for finding a fundamental set of cycles of a graph"
// https://doi.org/10.1145/363219.363232
var cycles [][]graph.Node
done := make(set.Int64s)
var tree linear.NodeStack
nodes := g.Nodes()
for nodes.Next() {
n := nodes.Node()
id := n.ID()
if done.Has(id) {
continue
}
done.Add(id)
tree = tree[:0]
tree.Push(n)
from := sets{id: set.Int64s{}}
to := map[int64]graph.Node{id: n}
for tree.Len() != 0 {
u := tree.Pop()
uid := u.ID()
adj := from[uid]
for _, v := range graph.NodesOf(g.From(uid)) {
vid := v.ID()
switch {
case uid == vid:
cycles = append(cycles, []graph.Node{u})
case !from.has(vid):
done.Add(vid)
to[vid] = u
tree.Push(v)
from.add(uid, vid)
case !adj.Has(vid):
c := []graph.Node{v, u}
adj := from[vid]
p := to[uid]
for !adj.Has(p.ID()) {
c = append(c, p)
p = to[p.ID()]
}
c = append(c, p, c[0])
cycles = append(cycles, c)
adj.Add(uid)
}
}
}
}
return cycles
}
type sets map[int64]set.Int64s
func (s sets) add(uid, vid int64) {
e, ok := s[vid]
if !ok {
e = make(set.Int64s)
s[vid] = e
}
e.Add(uid)
}
func (s sets) has(uid int64) bool {
_, ok := s[uid]
return ok
}

199
vendor/gonum.org/v1/gonum/graph/topo/tarjan.go generated vendored Normal file
View File

@@ -0,0 +1,199 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package topo
import (
"fmt"
"sort"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/ordered"
"gonum.org/v1/gonum/graph/internal/set"
)
// Unorderable is an error containing sets of unorderable graph.Nodes.
type Unorderable [][]graph.Node
// Error satisfies the error interface.
func (e Unorderable) Error() string {
const maxNodes = 10
var n int
for _, c := range e {
n += len(c)
}
if n > maxNodes {
// Don't return errors that are too long.
return fmt.Sprintf("topo: no topological ordering: %d nodes in %d cyclic components", n, len(e))
}
return fmt.Sprintf("topo: no topological ordering: cyclic components: %v", [][]graph.Node(e))
}
func lexical(nodes []graph.Node) { sort.Sort(ordered.ByID(nodes)) }
// Sort performs a topological sort of the directed graph g returning the 'from' to 'to'
// sort order. If a topological ordering is not possible, an Unorderable error is returned
// listing cyclic components in g with each cyclic component's members sorted by ID. When
// an Unorderable error is returned, each cyclic component's topological position within
// the sorted nodes is marked with a nil graph.Node.
func Sort(g graph.Directed) (sorted []graph.Node, err error) {
sccs := TarjanSCC(g)
return sortedFrom(sccs, lexical)
}
// SortStabilized performs a topological sort of the directed graph g returning the 'from'
// to 'to' sort order, or the order defined by the in place order sort function where there
// is no unambiguous topological ordering. If a topological ordering is not possible, an
// Unorderable error is returned listing cyclic components in g with each cyclic component's
// members sorted by the provided order function. If order is nil, nodes are ordered lexically
// by node ID. When an Unorderable error is returned, each cyclic component's topological
// position within the sorted nodes is marked with a nil graph.Node.
func SortStabilized(g graph.Directed, order func([]graph.Node)) (sorted []graph.Node, err error) {
if order == nil {
order = lexical
}
sccs := tarjanSCCstabilized(g, order)
return sortedFrom(sccs, order)
}
func sortedFrom(sccs [][]graph.Node, order func([]graph.Node)) ([]graph.Node, error) {
sorted := make([]graph.Node, 0, len(sccs))
var sc Unorderable
for _, s := range sccs {
if len(s) != 1 {
order(s)
sc = append(sc, s)
sorted = append(sorted, nil)
continue
}
sorted = append(sorted, s[0])
}
var err error
if sc != nil {
for i, j := 0, len(sc)-1; i < j; i, j = i+1, j-1 {
sc[i], sc[j] = sc[j], sc[i]
}
err = sc
}
ordered.Reverse(sorted)
return sorted, err
}
// TarjanSCC returns the strongly connected components of the graph g using Tarjan's algorithm.
//
// A strongly connected component of a graph is a set of vertices where it's possible to reach any
// vertex in the set from any other (meaning there's a cycle between them.)
//
// Generally speaking, a directed graph where the number of strongly connected components is equal
// to the number of nodes is acyclic, unless you count reflexive edges as a cycle (which requires
// only a little extra testing.)
//
func TarjanSCC(g graph.Directed) [][]graph.Node {
return tarjanSCCstabilized(g, nil)
}
func tarjanSCCstabilized(g graph.Directed, order func([]graph.Node)) [][]graph.Node {
nodes := graph.NodesOf(g.Nodes())
var succ func(id int64) []graph.Node
if order == nil {
succ = func(id int64) []graph.Node {
return graph.NodesOf(g.From(id))
}
} else {
order(nodes)
ordered.Reverse(nodes)
succ = func(id int64) []graph.Node {
to := graph.NodesOf(g.From(id))
order(to)
ordered.Reverse(to)
return to
}
}
t := tarjan{
succ: succ,
indexTable: make(map[int64]int, len(nodes)),
lowLink: make(map[int64]int, len(nodes)),
onStack: make(set.Int64s),
}
for _, v := range nodes {
if t.indexTable[v.ID()] == 0 {
t.strongconnect(v)
}
}
return t.sccs
}
// tarjan implements Tarjan's strongly connected component finding
// algorithm. The implementation is from the pseudocode at
//
// http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm?oldid=642744644
//
type tarjan struct {
succ func(id int64) []graph.Node
index int
indexTable map[int64]int
lowLink map[int64]int
onStack set.Int64s
stack []graph.Node
sccs [][]graph.Node
}
// strongconnect is the strongconnect function described in the
// wikipedia article.
func (t *tarjan) strongconnect(v graph.Node) {
vID := v.ID()
// Set the depth index for v to the smallest unused index.
t.index++
t.indexTable[vID] = t.index
t.lowLink[vID] = t.index
t.stack = append(t.stack, v)
t.onStack.Add(vID)
// Consider successors of v.
for _, w := range t.succ(vID) {
wID := w.ID()
if t.indexTable[wID] == 0 {
// Successor w has not yet been visited; recur on it.
t.strongconnect(w)
t.lowLink[vID] = min(t.lowLink[vID], t.lowLink[wID])
} else if t.onStack.Has(wID) {
// Successor w is in stack s and hence in the current SCC.
t.lowLink[vID] = min(t.lowLink[vID], t.indexTable[wID])
}
}
// If v is a root node, pop the stack and generate an SCC.
if t.lowLink[vID] == t.indexTable[vID] {
// Start a new strongly connected component.
var (
scc []graph.Node
w graph.Node
)
for {
w, t.stack = t.stack[len(t.stack)-1], t.stack[:len(t.stack)-1]
t.onStack.Remove(w.ID())
// Add w to current strongly connected component.
scc = append(scc, w)
if w.ID() == vID {
break
}
}
// Output the current strongly connected component.
t.sccs = append(t.sccs, scc)
}
}
func min(a, b int) int {
if a < b {
return a
}
return b
}

View File

@@ -0,0 +1,9 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build tomita
package topo
const tomitaTanakaTakahashi = true

68
vendor/gonum.org/v1/gonum/graph/topo/topo.go generated vendored Normal file
View File

@@ -0,0 +1,68 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package topo
import (
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/traverse"
)
// IsPathIn returns whether path is a path in g.
//
// As special cases, IsPathIn returns true for a zero length path or for
// a path of length 1 when the node in path exists in the graph.
func IsPathIn(g graph.Graph, path []graph.Node) bool {
switch len(path) {
case 0:
return true
case 1:
return g.Node(path[0].ID()) != nil
default:
var canReach func(uid, vid int64) bool
switch g := g.(type) {
case graph.Directed:
canReach = g.HasEdgeFromTo
default:
canReach = g.HasEdgeBetween
}
for i, u := range path[:len(path)-1] {
if !canReach(u.ID(), path[i+1].ID()) {
return false
}
}
return true
}
}
// PathExistsIn returns whether there is a path in g starting at from extending
// to to.
//
// PathExistsIn exists as a helper function. If many tests for path existence
// are being performed, other approaches will be more efficient.
func PathExistsIn(g graph.Graph, from, to graph.Node) bool {
var t traverse.BreadthFirst
return t.Walk(g, from, func(n graph.Node, _ int) bool { return n.ID() == to.ID() }) != nil
}
// ConnectedComponents returns the connected components of the undirected graph g.
func ConnectedComponents(g graph.Undirected) [][]graph.Node {
var (
w traverse.DepthFirst
c []graph.Node
cc [][]graph.Node
)
during := func(n graph.Node) {
c = append(c, n)
}
after := func() {
cc = append(cc, []graph.Node(nil))
cc[len(cc)-1] = append(cc[len(cc)-1], c...)
c = c[:0]
}
w.WalkAll(g, nil, after, during)
return cc
}

6
vendor/gonum.org/v1/gonum/graph/traverse/doc.go generated vendored Normal file
View File

@@ -0,0 +1,6 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package traverse provides basic graph traversal primitives.
package traverse // import "gonum.org/v1/gonum/graph/traverse"

231
vendor/gonum.org/v1/gonum/graph/traverse/traverse.go generated vendored Normal file
View File

@@ -0,0 +1,231 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package traverse
import (
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/linear"
"gonum.org/v1/gonum/graph/internal/set"
)
var _ Graph = graph.Graph(nil)
// Graph is the subset of graph.Graph necessary for graph traversal.
type Graph interface {
// From returns all nodes that can be reached directly
// from the node with the given ID.
From(id int64) graph.Nodes
// Edge returns the edge from u to v, with IDs uid and vid,
// if such an edge exists and nil otherwise. The node v
// must be directly reachable from u as defined by
// the From method.
Edge(uid, vid int64) graph.Edge
}
// BreadthFirst implements stateful breadth-first graph traversal.
type BreadthFirst struct {
// Visit is called on all nodes on their first visit.
Visit func(graph.Node)
// Traverse is called on all edges that may be traversed
// during the walk. This includes edges that would hop to
// an already visited node.
//
// The value returned by Traverse determines whether
// an edge can be traversed during the walk.
Traverse func(graph.Edge) bool
queue linear.NodeQueue
visited set.Int64s
}
// Walk performs a breadth-first traversal of the graph g starting from the given node,
// depending on the Traverse field and the until parameter if they are non-nil.
// The traversal follows edges for which Traverse(edge) is true and returns the first node
// for which until(node, depth) is true. During the traversal, if the Visit field is
// non-nil, it is called with each node the first time it is visited.
func (b *BreadthFirst) Walk(g Graph, from graph.Node, until func(n graph.Node, d int) bool) graph.Node {
if b.visited == nil {
b.visited = make(set.Int64s)
}
b.queue.Enqueue(from)
if b.Visit != nil && !b.visited.Has(from.ID()) {
b.Visit(from)
}
b.visited.Add(from.ID())
var (
depth int
children int
untilNext = 1
)
for b.queue.Len() > 0 {
t := b.queue.Dequeue()
if until != nil && until(t, depth) {
return t
}
tid := t.ID()
to := g.From(tid)
for to.Next() {
n := to.Node()
nid := n.ID()
if b.Traverse != nil && !b.Traverse(g.Edge(tid, nid)) {
continue
}
if b.visited.Has(nid) {
continue
}
if b.Visit != nil {
b.Visit(n)
}
b.visited.Add(nid)
children++
b.queue.Enqueue(n)
}
if untilNext--; untilNext == 0 {
depth++
untilNext = children
children = 0
}
}
return nil
}
// WalkAll calls Walk for each unvisited node of the graph g using edges independent
// of their direction. The functions before and after are called prior to commencing
// and after completing each walk if they are non-nil respectively. The function
// during is called on each node as it is traversed.
func (b *BreadthFirst) WalkAll(g graph.Undirected, before, after func(), during func(graph.Node)) {
b.Reset()
nodes := g.Nodes()
for nodes.Next() {
from := nodes.Node()
if b.Visited(from) {
continue
}
if before != nil {
before()
}
b.Walk(g, from, func(n graph.Node, _ int) bool {
if during != nil {
during(n)
}
return false
})
if after != nil {
after()
}
}
}
// Visited returned whether the node n was visited during a traverse.
func (b *BreadthFirst) Visited(n graph.Node) bool {
return b.visited.Has(n.ID())
}
// Reset resets the state of the traverser for reuse.
func (b *BreadthFirst) Reset() {
b.queue.Reset()
b.visited = nil
}
// DepthFirst implements stateful depth-first graph traversal.
type DepthFirst struct {
// Visit is called on all nodes on their first visit.
Visit func(graph.Node)
// Traverse is called on all edges that may be traversed
// during the walk. This includes edges that would hop to
// an already visited node.
//
// The value returned by Traverse determines whether an
// edge can be traversed during the walk.
Traverse func(graph.Edge) bool
stack linear.NodeStack
visited set.Int64s
}
// Walk performs a depth-first traversal of the graph g starting from the given node,
// depending on the Traverse field and the until parameter if they are non-nil.
// The traversal follows edges for which Traverse(edge) is true and returns the first node
// for which until(node) is true. During the traversal, if the Visit field is non-nil, it
// is called with each node the first time it is visited.
func (d *DepthFirst) Walk(g Graph, from graph.Node, until func(graph.Node) bool) graph.Node {
if d.visited == nil {
d.visited = make(set.Int64s)
}
d.stack.Push(from)
if d.Visit != nil && !d.visited.Has(from.ID()) {
d.Visit(from)
}
d.visited.Add(from.ID())
for d.stack.Len() > 0 {
t := d.stack.Pop()
if until != nil && until(t) {
return t
}
tid := t.ID()
to := g.From(tid)
for to.Next() {
n := to.Node()
nid := n.ID()
if d.Traverse != nil && !d.Traverse(g.Edge(tid, nid)) {
continue
}
if d.visited.Has(nid) {
continue
}
if d.Visit != nil {
d.Visit(n)
}
d.visited.Add(nid)
d.stack.Push(n)
}
}
return nil
}
// WalkAll calls Walk for each unvisited node of the graph g using edges independent
// of their direction. The functions before and after are called prior to commencing
// and after completing each walk if they are non-nil respectively. The function
// during is called on each node as it is traversed.
func (d *DepthFirst) WalkAll(g graph.Undirected, before, after func(), during func(graph.Node)) {
d.Reset()
nodes := g.Nodes()
for nodes.Next() {
from := nodes.Node()
if d.Visited(from) {
continue
}
if before != nil {
before()
}
d.Walk(g, from, func(n graph.Node) bool {
if during != nil {
during(n)
}
return false
})
if after != nil {
after()
}
}
}
// Visited returned whether the node n was visited during a traverse.
func (d *DepthFirst) Visited(n graph.Node) bool {
return d.visited.Has(n.ID())
}
// Reset resets the state of the traverser for reuse.
func (d *DepthFirst) Reset() {
d.stack = d.stack[:0]
d.visited = nil
}

270
vendor/gonum.org/v1/gonum/graph/undirect.go generated vendored Normal file
View File

@@ -0,0 +1,270 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package graph
// Undirect converts a directed graph to an undirected graph.
type Undirect struct {
G Directed
}
var _ Undirected = Undirect{}
// Node returns the node with the given ID if it exists in the graph,
// and nil otherwise.
func (g Undirect) Node(id int64) Node { return g.G.Node(id) }
// Nodes returns all the nodes in the graph.
func (g Undirect) Nodes() Nodes { return g.G.Nodes() }
// From returns all nodes in g that can be reached directly from u.
func (g Undirect) From(uid int64) Nodes {
return newNodeFilterIterator(g.G.From(uid), g.G.To(uid))
}
// HasEdgeBetween returns whether an edge exists between nodes x and y.
func (g Undirect) HasEdgeBetween(xid, yid int64) bool { return g.G.HasEdgeBetween(xid, yid) }
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
// If an edge exists, the Edge returned is an EdgePair. The weight of
// the edge is determined by applying the Merge func to the weights of the
// edges between u and v.
func (g Undirect) Edge(uid, vid int64) Edge { return g.EdgeBetween(uid, vid) }
// EdgeBetween returns the edge between nodes x and y. If an edge exists, the
// Edge returned is an EdgePair. The weight of the edge is determined by
// applying the Merge func to the weights of edges between x and y.
func (g Undirect) EdgeBetween(xid, yid int64) Edge {
fe := g.G.Edge(xid, yid)
re := g.G.Edge(yid, xid)
if fe == nil && re == nil {
return nil
}
return EdgePair{fe, re}
}
// UndirectWeighted converts a directed weighted graph to an undirected weighted graph,
// resolving edge weight conflicts.
type UndirectWeighted struct {
G WeightedDirected
// Absent is the value used to
// represent absent edge weights
// passed to Merge if the reverse
// edge is present.
Absent float64
// Merge defines how discordant edge
// weights in G are resolved. A merge
// is performed if at least one edge
// exists between the nodes being
// considered. The edges corresponding
// to the two weights are also passed,
// in the same order.
// The order of weight parameters
// passed to Merge is not defined, so
// the function should be commutative.
// If Merge is nil, the arithmetic
// mean is used to merge weights.
Merge func(x, y float64, xe, ye Edge) float64
}
var (
_ Undirected = UndirectWeighted{}
_ WeightedUndirected = UndirectWeighted{}
)
// Node returns the node with the given ID if it exists in the graph,
// and nil otherwise.
func (g UndirectWeighted) Node(id int64) Node { return g.G.Node(id) }
// Nodes returns all the nodes in the graph.
func (g UndirectWeighted) Nodes() Nodes { return g.G.Nodes() }
// From returns all nodes in g that can be reached directly from u.
func (g UndirectWeighted) From(uid int64) Nodes {
return newNodeFilterIterator(g.G.From(uid), g.G.To(uid))
}
// HasEdgeBetween returns whether an edge exists between nodes x and y.
func (g UndirectWeighted) HasEdgeBetween(xid, yid int64) bool { return g.G.HasEdgeBetween(xid, yid) }
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
// If an edge exists, the Edge returned is an EdgePair. The weight of
// the edge is determined by applying the Merge func to the weights of the
// edges between u and v.
func (g UndirectWeighted) Edge(uid, vid int64) Edge { return g.WeightedEdgeBetween(uid, vid) }
// WeightedEdge returns the weighted edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
// If an edge exists, the Edge returned is an EdgePair. The weight of
// the edge is determined by applying the Merge func to the weights of the
// edges between u and v.
func (g UndirectWeighted) WeightedEdge(uid, vid int64) WeightedEdge {
return g.WeightedEdgeBetween(uid, vid)
}
// EdgeBetween returns the edge between nodes x and y. If an edge exists, the
// Edge returned is an EdgePair. The weight of the edge is determined by
// applying the Merge func to the weights of edges between x and y.
func (g UndirectWeighted) EdgeBetween(xid, yid int64) Edge {
return g.WeightedEdgeBetween(xid, yid)
}
// WeightedEdgeBetween returns the weighted edge between nodes x and y. If an edge exists, the
// Edge returned is an EdgePair. The weight of the edge is determined by
// applying the Merge func to the weights of edges between x and y.
func (g UndirectWeighted) WeightedEdgeBetween(xid, yid int64) WeightedEdge {
fe := g.G.Edge(xid, yid)
re := g.G.Edge(yid, xid)
if fe == nil && re == nil {
return nil
}
f, ok := g.G.Weight(xid, yid)
if !ok {
f = g.Absent
}
r, ok := g.G.Weight(yid, xid)
if !ok {
r = g.Absent
}
var w float64
if g.Merge == nil {
w = (f + r) / 2
} else {
w = g.Merge(f, r, fe, re)
}
return WeightedEdgePair{EdgePair: [2]Edge{fe, re}, W: w}
}
// Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge.
// If x and y are the same node the internal node weight is returned. If there is no joining
// edge between the two nodes the weight value returned is zero. Weight returns true if an edge
// exists between x and y or if x and y have the same ID, false otherwise.
func (g UndirectWeighted) Weight(xid, yid int64) (w float64, ok bool) {
fe := g.G.Edge(xid, yid)
re := g.G.Edge(yid, xid)
f, fOk := g.G.Weight(xid, yid)
if !fOk {
f = g.Absent
}
r, rOK := g.G.Weight(yid, xid)
if !rOK {
r = g.Absent
}
ok = fOk || rOK
if g.Merge == nil {
return (f + r) / 2, ok
}
return g.Merge(f, r, fe, re), ok
}
// EdgePair is an opposed pair of directed edges.
type EdgePair [2]Edge
// From returns the from node of the first non-nil edge, or nil.
func (e EdgePair) From() Node {
if e[0] != nil {
return e[0].From()
} else if e[1] != nil {
return e[1].From()
}
return nil
}
// To returns the to node of the first non-nil edge, or nil.
func (e EdgePair) To() Node {
if e[0] != nil {
return e[0].To()
} else if e[1] != nil {
return e[1].To()
}
return nil
}
// ReversedEdge returns a new Edge with the end point of the
// edges in the pair swapped.
func (e EdgePair) ReversedEdge() Edge {
if e[0] != nil {
e[0] = e[0].ReversedEdge()
}
if e[1] != nil {
e[1] = e[1].ReversedEdge()
}
return e
}
// WeightedEdgePair is an opposed pair of directed edges.
type WeightedEdgePair struct {
EdgePair
W float64
}
// ReversedEdge returns a new Edge with the end point of the
// edges in the pair swapped.
func (e WeightedEdgePair) ReversedEdge() Edge {
e.EdgePair = e.EdgePair.ReversedEdge().(EdgePair)
return e
}
// Weight returns the merged edge weights of the two edges.
func (e WeightedEdgePair) Weight() float64 { return e.W }
// nodeFilterIterator combines two Nodes to produce a single stream of
// unique nodes.
type nodeFilterIterator struct {
a, b Nodes
// unique indicates the node in b with the key ID is unique.
unique map[int64]bool
}
func newNodeFilterIterator(a, b Nodes) *nodeFilterIterator {
n := nodeFilterIterator{a: a, b: b, unique: make(map[int64]bool)}
for n.b.Next() {
n.unique[n.b.Node().ID()] = true
}
n.b.Reset()
for n.a.Next() {
n.unique[n.a.Node().ID()] = false
}
n.a.Reset()
return &n
}
func (n *nodeFilterIterator) Len() int {
return len(n.unique)
}
func (n *nodeFilterIterator) Next() bool {
n.Len()
if n.a.Next() {
return true
}
for n.b.Next() {
if n.unique[n.b.Node().ID()] {
return true
}
}
return false
}
func (n *nodeFilterIterator) Node() Node {
if n.a.Len() != 0 {
return n.a.Node()
}
return n.b.Node()
}
func (n *nodeFilterIterator) Reset() {
n.a.Reset()
n.b.Reset()
}