1. update clientset, deepcopy using code-generator

2. add a dummy file tools.go to force "go mod vendor" to see
code-generator as dependencies
3. add a script to update CRD
4. add a README to document CRD updating steps
run go mod tidy
update README
This commit is contained in:
xiangqian
2019-12-03 01:22:21 -08:00
parent 90533183e4
commit 728e29aa7e
1128 changed files with 167705 additions and 5135 deletions

508
vendor/gonum.org/v1/gonum/blas/cblas128/cblas128.go generated vendored Normal file
View File

@@ -0,0 +1,508 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cblas128
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/gonum"
)
var cblas128 blas.Complex128 = gonum.Implementation{}
// Use sets the BLAS complex128 implementation to be used by subsequent BLAS calls.
// The default implementation is
// gonum.org/v1/gonum/blas/gonum.Implementation.
func Use(b blas.Complex128) {
cblas128 = b
}
// Implementation returns the current BLAS complex128 implementation.
//
// Implementation allows direct calls to the current the BLAS complex128 implementation
// giving finer control of parameters.
func Implementation() blas.Complex128 {
return cblas128
}
// Vector represents a vector with an associated element increment.
type Vector struct {
Inc int
Data []complex128
}
// General represents a matrix using the conventional storage scheme.
type General struct {
Rows, Cols int
Stride int
Data []complex128
}
// Band represents a band matrix using the band storage scheme.
type Band struct {
Rows, Cols int
KL, KU int
Stride int
Data []complex128
}
// Triangular represents a triangular matrix using the conventional storage scheme.
type Triangular struct {
N int
Stride int
Data []complex128
Uplo blas.Uplo
Diag blas.Diag
}
// TriangularBand represents a triangular matrix using the band storage scheme.
type TriangularBand struct {
N, K int
Stride int
Data []complex128
Uplo blas.Uplo
Diag blas.Diag
}
// TriangularPacked represents a triangular matrix using the packed storage scheme.
type TriangularPacked struct {
N int
Data []complex128
Uplo blas.Uplo
Diag blas.Diag
}
// Symmetric represents a symmetric matrix using the conventional storage scheme.
type Symmetric struct {
N int
Stride int
Data []complex128
Uplo blas.Uplo
}
// SymmetricBand represents a symmetric matrix using the band storage scheme.
type SymmetricBand struct {
N, K int
Stride int
Data []complex128
Uplo blas.Uplo
}
// SymmetricPacked represents a symmetric matrix using the packed storage scheme.
type SymmetricPacked struct {
N int
Data []complex128
Uplo blas.Uplo
}
// Hermitian represents an Hermitian matrix using the conventional storage scheme.
type Hermitian Symmetric
// HermitianBand represents an Hermitian matrix using the band storage scheme.
type HermitianBand SymmetricBand
// HermitianPacked represents an Hermitian matrix using the packed storage scheme.
type HermitianPacked SymmetricPacked
// Level 1
const negInc = "cblas128: negative vector increment"
// Dotu computes the dot product of the two vectors without
// complex conjugation:
// x^T * y.
func Dotu(n int, x, y Vector) complex128 {
return cblas128.Zdotu(n, x.Data, x.Inc, y.Data, y.Inc)
}
// Dotc computes the dot product of the two vectors with
// complex conjugation:
// x^H * y.
func Dotc(n int, x, y Vector) complex128 {
return cblas128.Zdotc(n, x.Data, x.Inc, y.Data, y.Inc)
}
// Nrm2 computes the Euclidean norm of the vector x:
// sqrt(\sum_i x[i] * x[i]).
//
// Nrm2 will panic if the vector increment is negative.
func Nrm2(n int, x Vector) float64 {
if x.Inc < 0 {
panic(negInc)
}
return cblas128.Dznrm2(n, x.Data, x.Inc)
}
// Asum computes the sum of magnitudes of the real and imaginary parts of
// elements of the vector x:
// \sum_i (|Re x[i]| + |Im x[i]|).
//
// Asum will panic if the vector increment is negative.
func Asum(n int, x Vector) float64 {
if x.Inc < 0 {
panic(negInc)
}
return cblas128.Dzasum(n, x.Data, x.Inc)
}
// Iamax returns the index of an element of x with the largest sum of
// magnitudes of the real and imaginary parts (|Re x[i]|+|Im x[i]|).
// If there are multiple such indices, the earliest is returned.
//
// Iamax returns -1 if n == 0.
//
// Iamax will panic if the vector increment is negative.
func Iamax(n int, x Vector) int {
if x.Inc < 0 {
panic(negInc)
}
return cblas128.Izamax(n, x.Data, x.Inc)
}
// Swap exchanges the elements of two vectors:
// x[i], y[i] = y[i], x[i] for all i.
func Swap(n int, x, y Vector) {
cblas128.Zswap(n, x.Data, x.Inc, y.Data, y.Inc)
}
// Copy copies the elements of x into the elements of y:
// y[i] = x[i] for all i.
func Copy(n int, x, y Vector) {
cblas128.Zcopy(n, x.Data, x.Inc, y.Data, y.Inc)
}
// Axpy computes
// y = alpha * x + y,
// where x and y are vectors, and alpha is a scalar.
func Axpy(n int, alpha complex128, x, y Vector) {
cblas128.Zaxpy(n, alpha, x.Data, x.Inc, y.Data, y.Inc)
}
// Scal computes
// x = alpha * x,
// where x is a vector, and alpha is a scalar.
//
// Scal will panic if the vector increment is negative.
func Scal(n int, alpha complex128, x Vector) {
if x.Inc < 0 {
panic(negInc)
}
cblas128.Zscal(n, alpha, x.Data, x.Inc)
}
// Dscal computes
// x = alpha * x,
// where x is a vector, and alpha is a real scalar.
//
// Dscal will panic if the vector increment is negative.
func Dscal(n int, alpha float64, x Vector) {
if x.Inc < 0 {
panic(negInc)
}
cblas128.Zdscal(n, alpha, x.Data, x.Inc)
}
// Level 2
// Gemv computes
// y = alpha * A * x + beta * y, if t == blas.NoTrans,
// y = alpha * A^T * x + beta * y, if t == blas.Trans,
// y = alpha * A^H * x + beta * y, if t == blas.ConjTrans,
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are
// scalars.
func Gemv(t blas.Transpose, alpha complex128, a General, x Vector, beta complex128, y Vector) {
cblas128.Zgemv(t, a.Rows, a.Cols, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Gbmv computes
// y = alpha * A * x + beta * y, if t == blas.NoTrans,
// y = alpha * A^T * x + beta * y, if t == blas.Trans,
// y = alpha * A^H * x + beta * y, if t == blas.ConjTrans,
// where A is an m×n band matrix, x and y are vectors, and alpha and beta are
// scalars.
func Gbmv(t blas.Transpose, alpha complex128, a Band, x Vector, beta complex128, y Vector) {
cblas128.Zgbmv(t, a.Rows, a.Cols, a.KL, a.KU, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Trmv computes
// x = A * x, if t == blas.NoTrans,
// x = A^T * x, if t == blas.Trans,
// x = A^H * x, if t == blas.ConjTrans,
// where A is an n×n triangular matrix, and x is a vector.
func Trmv(t blas.Transpose, a Triangular, x Vector) {
cblas128.Ztrmv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
}
// Tbmv computes
// x = A * x, if t == blas.NoTrans,
// x = A^T * x, if t == blas.Trans,
// x = A^H * x, if t == blas.ConjTrans,
// where A is an n×n triangular band matrix, and x is a vector.
func Tbmv(t blas.Transpose, a TriangularBand, x Vector) {
cblas128.Ztbmv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
}
// Tpmv computes
// x = A * x, if t == blas.NoTrans,
// x = A^T * x, if t == blas.Trans,
// x = A^H * x, if t == blas.ConjTrans,
// where A is an n×n triangular matrix in packed format, and x is a vector.
func Tpmv(t blas.Transpose, a TriangularPacked, x Vector) {
cblas128.Ztpmv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
}
// Trsv solves
// A * x = b, if t == blas.NoTrans,
// A^T * x = b, if t == blas.Trans,
// A^H * x = b, if t == blas.ConjTrans,
// where A is an n×n triangular matrix and x is a vector.
//
// At entry to the function, x contains the values of b, and the result is
// stored in-place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Trsv(t blas.Transpose, a Triangular, x Vector) {
cblas128.Ztrsv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
}
// Tbsv solves
// A * x = b, if t == blas.NoTrans,
// A^T * x = b, if t == blas.Trans,
// A^H * x = b, if t == blas.ConjTrans,
// where A is an n×n triangular band matrix, and x is a vector.
//
// At entry to the function, x contains the values of b, and the result is
// stored in-place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Tbsv(t blas.Transpose, a TriangularBand, x Vector) {
cblas128.Ztbsv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
}
// Tpsv solves
// A * x = b, if t == blas.NoTrans,
// A^T * x = b, if t == blas.Trans,
// A^H * x = b, if t == blas.ConjTrans,
// where A is an n×n triangular matrix in packed format and x is a vector.
//
// At entry to the function, x contains the values of b, and the result is
// stored in-place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Tpsv(t blas.Transpose, a TriangularPacked, x Vector) {
cblas128.Ztpsv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
}
// Hemv computes
// y = alpha * A * x + beta * y,
// where A is an n×n Hermitian matrix, x and y are vectors, and alpha and
// beta are scalars.
func Hemv(alpha complex128, a Hermitian, x Vector, beta complex128, y Vector) {
cblas128.Zhemv(a.Uplo, a.N, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Hbmv performs
// y = alpha * A * x + beta * y,
// where A is an n×n Hermitian band matrix, x and y are vectors, and alpha
// and beta are scalars.
func Hbmv(alpha complex128, a HermitianBand, x Vector, beta complex128, y Vector) {
cblas128.Zhbmv(a.Uplo, a.N, a.K, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Hpmv performs
// y = alpha * A * x + beta * y,
// where A is an n×n Hermitian matrix in packed format, x and y are vectors,
// and alpha and beta are scalars.
func Hpmv(alpha complex128, a HermitianPacked, x Vector, beta complex128, y Vector) {
cblas128.Zhpmv(a.Uplo, a.N, alpha, a.Data, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Geru performs a rank-1 update
// A += alpha * x * y^T,
// where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
func Geru(alpha complex128, x, y Vector, a General) {
cblas128.Zgeru(a.Rows, a.Cols, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
}
// Gerc performs a rank-1 update
// A += alpha * x * y^H,
// where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
func Gerc(alpha complex128, x, y Vector, a General) {
cblas128.Zgerc(a.Rows, a.Cols, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
}
// Her performs a rank-1 update
// A += alpha * x * y^T,
// where A is an m×n Hermitian matrix, x and y are vectors, and alpha is a scalar.
func Her(alpha float64, x Vector, a Hermitian) {
cblas128.Zher(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data, a.Stride)
}
// Hpr performs a rank-1 update
// A += alpha * x * x^H,
// where A is an n×n Hermitian matrix in packed format, x is a vector, and
// alpha is a scalar.
func Hpr(alpha float64, x Vector, a HermitianPacked) {
cblas128.Zhpr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data)
}
// Her2 performs a rank-2 update
// A += alpha * x * y^H + conj(alpha) * y * x^H,
// where A is an n×n Hermitian matrix, x and y are vectors, and alpha is a scalar.
func Her2(alpha complex128, x, y Vector, a Hermitian) {
cblas128.Zher2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
}
// Hpr2 performs a rank-2 update
// A += alpha * x * y^H + conj(alpha) * y * x^H,
// where A is an n×n Hermitian matrix in packed format, x and y are vectors,
// and alpha is a scalar.
func Hpr2(alpha complex128, x, y Vector, a HermitianPacked) {
cblas128.Zhpr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data)
}
// Level 3
// Gemm computes
// C = alpha * A * B + beta * C,
// where A, B, and C are dense matrices, and alpha and beta are scalars.
// tA and tB specify whether A or B are transposed or conjugated.
func Gemm(tA, tB blas.Transpose, alpha complex128, a, b General, beta complex128, c General) {
var m, n, k int
if tA == blas.NoTrans {
m, k = a.Rows, a.Cols
} else {
m, k = a.Cols, a.Rows
}
if tB == blas.NoTrans {
n = b.Cols
} else {
n = b.Rows
}
cblas128.Zgemm(tA, tB, m, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Symm performs
// C = alpha * A * B + beta * C, if s == blas.Left,
// C = alpha * B * A + beta * C, if s == blas.Right,
// where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and
// alpha and beta are scalars.
func Symm(s blas.Side, alpha complex128, a Symmetric, b General, beta complex128, c General) {
var m, n int
if s == blas.Left {
m, n = a.N, b.Cols
} else {
m, n = b.Rows, a.N
}
cblas128.Zsymm(s, a.Uplo, m, n, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Syrk performs a symmetric rank-k update
// C = alpha * A * A^T + beta * C, if t == blas.NoTrans,
// C = alpha * A^T * A + beta * C, if t == blas.Trans,
// where C is an n×n symmetric matrix, A is an n×k matrix if t == blas.NoTrans
// and a k×n matrix otherwise, and alpha and beta are scalars.
func Syrk(t blas.Transpose, alpha complex128, a General, beta complex128, c Symmetric) {
var n, k int
if t == blas.NoTrans {
n, k = a.Rows, a.Cols
} else {
n, k = a.Cols, a.Rows
}
cblas128.Zsyrk(c.Uplo, t, n, k, alpha, a.Data, a.Stride, beta, c.Data, c.Stride)
}
// Syr2k performs a symmetric rank-2k update
// C = alpha * A * B^T + alpha * B * A^T + beta * C, if t == blas.NoTrans,
// C = alpha * A^T * B + alpha * B^T * A + beta * C, if t == blas.Trans,
// where C is an n×n symmetric matrix, A and B are n×k matrices if
// t == blas.NoTrans and k×n otherwise, and alpha and beta are scalars.
func Syr2k(t blas.Transpose, alpha complex128, a, b General, beta complex128, c Symmetric) {
var n, k int
if t == blas.NoTrans {
n, k = a.Rows, a.Cols
} else {
n, k = a.Cols, a.Rows
}
cblas128.Zsyr2k(c.Uplo, t, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Trmm performs
// B = alpha * A * B, if tA == blas.NoTrans and s == blas.Left,
// B = alpha * A^T * B, if tA == blas.Trans and s == blas.Left,
// B = alpha * A^H * B, if tA == blas.ConjTrans and s == blas.Left,
// B = alpha * B * A, if tA == blas.NoTrans and s == blas.Right,
// B = alpha * B * A^T, if tA == blas.Trans and s == blas.Right,
// B = alpha * B * A^H, if tA == blas.ConjTrans and s == blas.Right,
// where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is
// a scalar.
func Trmm(s blas.Side, tA blas.Transpose, alpha complex128, a Triangular, b General) {
cblas128.Ztrmm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
}
// Trsm solves
// A * X = alpha * B, if tA == blas.NoTrans and s == blas.Left,
// A^T * X = alpha * B, if tA == blas.Trans and s == blas.Left,
// A^H * X = alpha * B, if tA == blas.ConjTrans and s == blas.Left,
// X * A = alpha * B, if tA == blas.NoTrans and s == blas.Right,
// X * A^T = alpha * B, if tA == blas.Trans and s == blas.Right,
// X * A^H = alpha * B, if tA == blas.ConjTrans and s == blas.Right,
// where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and
// alpha is a scalar.
//
// At entry to the function, b contains the values of B, and the result is
// stored in-place into b.
//
// No check is made that A is invertible.
func Trsm(s blas.Side, tA blas.Transpose, alpha complex128, a Triangular, b General) {
cblas128.Ztrsm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
}
// Hemm performs
// C = alpha * A * B + beta * C, if s == blas.Left,
// C = alpha * B * A + beta * C, if s == blas.Right,
// where A is an n×n or m×m Hermitian matrix, B and C are m×n matrices, and
// alpha and beta are scalars.
func Hemm(s blas.Side, alpha complex128, a Hermitian, b General, beta complex128, c General) {
var m, n int
if s == blas.Left {
m, n = a.N, b.Cols
} else {
m, n = b.Rows, a.N
}
cblas128.Zhemm(s, a.Uplo, m, n, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Herk performs the Hermitian rank-k update
// C = alpha * A * A^H + beta*C, if t == blas.NoTrans,
// C = alpha * A^H * A + beta*C, if t == blas.ConjTrans,
// where C is an n×n Hermitian matrix, A is an n×k matrix if t == blas.NoTrans
// and a k×n matrix otherwise, and alpha and beta are scalars.
func Herk(t blas.Transpose, alpha float64, a General, beta float64, c Hermitian) {
var n, k int
if t == blas.NoTrans {
n, k = a.Rows, a.Cols
} else {
n, k = a.Cols, a.Rows
}
cblas128.Zherk(c.Uplo, t, n, k, alpha, a.Data, a.Stride, beta, c.Data, c.Stride)
}
// Her2k performs the Hermitian rank-2k update
// C = alpha * A * B^H + conj(alpha) * B * A^H + beta * C, if t == blas.NoTrans,
// C = alpha * A^H * B + conj(alpha) * B^H * A + beta * C, if t == blas.ConjTrans,
// where C is an n×n Hermitian matrix, A and B are n×k matrices if t == NoTrans
// and k×n matrices otherwise, and alpha and beta are scalars.
func Her2k(t blas.Transpose, alpha complex128, a, b General, beta float64, c Hermitian) {
var n, k int
if t == blas.NoTrans {
n, k = a.Rows, a.Cols
} else {
n, k = a.Cols, a.Rows
}
cblas128.Zher2k(c.Uplo, t, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}

279
vendor/gonum.org/v1/gonum/blas/cblas128/conv.go generated vendored Normal file
View File

@@ -0,0 +1,279 @@
// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cblas128
import "gonum.org/v1/gonum/blas"
// GeneralCols represents a matrix using the conventional column-major storage scheme.
type GeneralCols General
// From fills the receiver with elements from a. The receiver
// must have the same dimensions as a and have adequate backing
// data storage.
func (t GeneralCols) From(a General) {
if t.Rows != a.Rows || t.Cols != a.Cols {
panic("cblas128: mismatched dimension")
}
if len(t.Data) < (t.Cols-1)*t.Stride+t.Rows {
panic("cblas128: short data slice")
}
for i := 0; i < a.Rows; i++ {
for j, v := range a.Data[i*a.Stride : i*a.Stride+a.Cols] {
t.Data[i+j*t.Stride] = v
}
}
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions as a and have adequate backing
// data storage.
func (t General) From(a GeneralCols) {
if t.Rows != a.Rows || t.Cols != a.Cols {
panic("cblas128: mismatched dimension")
}
if len(t.Data) < (t.Rows-1)*t.Stride+t.Cols {
panic("cblas128: short data slice")
}
for j := 0; j < a.Cols; j++ {
for i, v := range a.Data[j*a.Stride : j*a.Stride+a.Rows] {
t.Data[i*t.Stride+j] = v
}
}
}
// TriangularCols represents a matrix using the conventional column-major storage scheme.
type TriangularCols Triangular
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, uplo and diag as a and have
// adequate backing data storage.
func (t TriangularCols) From(a Triangular) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
if t.Diag != a.Diag {
panic("cblas128: mismatched BLAS diag")
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
for i := 0; i < a.N; i++ {
for j := i; j < a.N; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
case blas.Lower:
for i := 0; i < a.N; i++ {
for j := 0; j <= i; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
case blas.All:
for i := 0; i < a.N; i++ {
for j := 0; j < a.N; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
}
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, uplo and diag as a and have
// adequate backing data storage.
func (t Triangular) From(a TriangularCols) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
if t.Diag != a.Diag {
panic("cblas128: mismatched BLAS diag")
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
for i := 0; i < a.N; i++ {
for j := i; j < a.N; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
case blas.Lower:
for i := 0; i < a.N; i++ {
for j := 0; j <= i; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
case blas.All:
for i := 0; i < a.N; i++ {
for j := 0; j < a.N; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
}
}
// BandCols represents a matrix using the band column-major storage scheme.
type BandCols Band
// From fills the receiver with elements from a. The receiver
// must have the same dimensions and bandwidth as a and have
// adequate backing data storage.
func (t BandCols) From(a Band) {
if t.Rows != a.Rows || t.Cols != a.Cols {
panic("cblas128: mismatched dimension")
}
if t.KL != a.KL || t.KU != a.KU {
panic("cblas128: mismatched bandwidth")
}
if a.Stride < a.KL+a.KU+1 {
panic("cblas128: short stride for source")
}
if t.Stride < t.KL+t.KU+1 {
panic("cblas128: short stride for destination")
}
for i := 0; i < a.Rows; i++ {
for j := max(0, i-a.KL); j < min(i+a.KU+1, a.Cols); j++ {
t.Data[i+t.KU-j+j*t.Stride] = a.Data[j+a.KL-i+i*a.Stride]
}
}
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions and bandwidth as a and have
// adequate backing data storage.
func (t Band) From(a BandCols) {
if t.Rows != a.Rows || t.Cols != a.Cols {
panic("cblas128: mismatched dimension")
}
if t.KL != a.KL || t.KU != a.KU {
panic("cblas128: mismatched bandwidth")
}
if a.Stride < a.KL+a.KU+1 {
panic("cblas128: short stride for source")
}
if t.Stride < t.KL+t.KU+1 {
panic("cblas128: short stride for destination")
}
for j := 0; j < a.Cols; j++ {
for i := max(0, j-a.KU); i < min(j+a.KL+1, a.Rows); i++ {
t.Data[j+a.KL-i+i*a.Stride] = a.Data[i+t.KU-j+j*t.Stride]
}
}
}
// TriangularBandCols represents a symmetric matrix using the band column-major storage scheme.
type TriangularBandCols TriangularBand
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, bandwidth and uplo as a and
// have adequate backing data storage.
func (t TriangularBandCols) From(a TriangularBand) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.K != a.K {
panic("cblas128: mismatched bandwidth")
}
if a.Stride < a.K+1 {
panic("cblas128: short stride for source")
}
if t.Stride < t.K+1 {
panic("cblas128: short stride for destination")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
if t.Diag != a.Diag {
panic("cblas128: mismatched BLAS diag")
}
dst := BandCols{
Rows: t.N, Cols: t.N,
Stride: t.Stride,
Data: t.Data,
}
src := Band{
Rows: a.N, Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
dst.KU = t.K
src.KU = a.K
case blas.Lower:
dst.KL = t.K
src.KL = a.K
}
dst.From(src)
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, bandwidth and uplo as a and
// have adequate backing data storage.
func (t TriangularBand) From(a TriangularBandCols) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.K != a.K {
panic("cblas128: mismatched bandwidth")
}
if a.Stride < a.K+1 {
panic("cblas128: short stride for source")
}
if t.Stride < t.K+1 {
panic("cblas128: short stride for destination")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
if t.Diag != a.Diag {
panic("cblas128: mismatched BLAS diag")
}
dst := Band{
Rows: t.N, Cols: t.N,
Stride: t.Stride,
Data: t.Data,
}
src := BandCols{
Rows: a.N, Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
dst.KU = t.K
src.KU = a.K
case blas.Lower:
dst.KL = t.K
src.KL = a.K
}
dst.From(src)
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}

View File

@@ -0,0 +1,155 @@
// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cblas128
import "gonum.org/v1/gonum/blas"
// HermitianCols represents a matrix using the conventional column-major storage scheme.
type HermitianCols Hermitian
// From fills the receiver with elements from a. The receiver
// must have the same dimensions and uplo as a and have adequate
// backing data storage.
func (t HermitianCols) From(a Hermitian) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
for i := 0; i < a.N; i++ {
for j := i; j < a.N; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
case blas.Lower:
for i := 0; i < a.N; i++ {
for j := 0; j <= i; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
}
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions and uplo as a and have adequate
// backing data storage.
func (t Hermitian) From(a HermitianCols) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
for i := 0; i < a.N; i++ {
for j := i; j < a.N; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
case blas.Lower:
for i := 0; i < a.N; i++ {
for j := 0; j <= i; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
}
}
// HermitianBandCols represents an Hermitian matrix using the band column-major storage scheme.
type HermitianBandCols HermitianBand
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, bandwidth and uplo as a and
// have adequate backing data storage.
func (t HermitianBandCols) From(a HermitianBand) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.K != a.K {
panic("cblas128: mismatched bandwidth")
}
if a.Stride < a.K+1 {
panic("cblas128: short stride for source")
}
if t.Stride < t.K+1 {
panic("cblas128: short stride for destination")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
dst := BandCols{
Rows: t.N, Cols: t.N,
Stride: t.Stride,
Data: t.Data,
}
src := Band{
Rows: a.N, Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
dst.KU = t.K
src.KU = a.K
case blas.Lower:
dst.KL = t.K
src.KL = a.K
}
dst.From(src)
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, bandwidth and uplo as a and
// have adequate backing data storage.
func (t HermitianBand) From(a HermitianBandCols) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.K != a.K {
panic("cblas128: mismatched bandwidth")
}
if a.Stride < a.K+1 {
panic("cblas128: short stride for source")
}
if t.Stride < t.K+1 {
panic("cblas128: short stride for destination")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
dst := Band{
Rows: t.N, Cols: t.N,
Stride: t.Stride,
Data: t.Data,
}
src := BandCols{
Rows: a.N, Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
dst.KU = t.K
src.KU = a.K
case blas.Lower:
dst.KL = t.K
src.KL = a.K
}
dst.From(src)
}

View File

@@ -0,0 +1,155 @@
// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cblas128
import "gonum.org/v1/gonum/blas"
// SymmetricCols represents a matrix using the conventional column-major storage scheme.
type SymmetricCols Symmetric
// From fills the receiver with elements from a. The receiver
// must have the same dimensions and uplo as a and have adequate
// backing data storage.
func (t SymmetricCols) From(a Symmetric) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
for i := 0; i < a.N; i++ {
for j := i; j < a.N; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
case blas.Lower:
for i := 0; i < a.N; i++ {
for j := 0; j <= i; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
}
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions and uplo as a and have adequate
// backing data storage.
func (t Symmetric) From(a SymmetricCols) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
for i := 0; i < a.N; i++ {
for j := i; j < a.N; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
case blas.Lower:
for i := 0; i < a.N; i++ {
for j := 0; j <= i; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
}
}
// SymmetricBandCols represents a symmetric matrix using the band column-major storage scheme.
type SymmetricBandCols SymmetricBand
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, bandwidth and uplo as a and
// have adequate backing data storage.
func (t SymmetricBandCols) From(a SymmetricBand) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.K != a.K {
panic("cblas128: mismatched bandwidth")
}
if a.Stride < a.K+1 {
panic("cblas128: short stride for source")
}
if t.Stride < t.K+1 {
panic("cblas128: short stride for destination")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
dst := BandCols{
Rows: t.N, Cols: t.N,
Stride: t.Stride,
Data: t.Data,
}
src := Band{
Rows: a.N, Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
dst.KU = t.K
src.KU = a.K
case blas.Lower:
dst.KL = t.K
src.KL = a.K
}
dst.From(src)
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, bandwidth and uplo as a and
// have adequate backing data storage.
func (t SymmetricBand) From(a SymmetricBandCols) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.K != a.K {
panic("cblas128: mismatched bandwidth")
}
if a.Stride < a.K+1 {
panic("cblas128: short stride for source")
}
if t.Stride < t.K+1 {
panic("cblas128: short stride for destination")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
dst := Band{
Rows: t.N, Cols: t.N,
Stride: t.Stride,
Data: t.Data,
}
src := BandCols{
Rows: a.N, Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
dst.KU = t.K
src.KU = a.K
case blas.Lower:
dst.KL = t.K
src.KL = a.K
}
dst.From(src)
}

6
vendor/gonum.org/v1/gonum/blas/cblas128/doc.go generated vendored Normal file
View File

@@ -0,0 +1,6 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package cblas128 provides a simple interface to the complex128 BLAS API.
package cblas128 // import "gonum.org/v1/gonum/blas/cblas128"