1. update clientset, deepcopy using code-generator
2. add a dummy file tools.go to force "go mod vendor" to see code-generator as dependencies 3. add a script to update CRD 4. add a README to document CRD updating steps run go mod tidy update README
This commit is contained in:
47
vendor/gonum.org/v1/gonum/blas/README.md
generated
vendored
Normal file
47
vendor/gonum.org/v1/gonum/blas/README.md
generated
vendored
Normal file
@@ -0,0 +1,47 @@
|
||||
# Gonum BLAS [](https://godoc.org/gonum.org/v1/gonum/blas)
|
||||
|
||||
A collection of packages to provide BLAS functionality for the [Go programming
|
||||
language](http://golang.org)
|
||||
|
||||
## Installation
|
||||
```sh
|
||||
go get gonum.org/v1/gonum/blas/...
|
||||
```
|
||||
|
||||
## Packages
|
||||
|
||||
### blas
|
||||
|
||||
Defines [BLAS API](http://www.netlib.org/blas/blast-forum/cinterface.pdf) split in several
|
||||
interfaces.
|
||||
|
||||
### blas/gonum
|
||||
|
||||
Go implementation of the BLAS API (incomplete, implements the `float32` and `float64` API).
|
||||
|
||||
### blas/blas64 and blas/blas32
|
||||
|
||||
Wrappers for an implementation of the double (i.e., `float64`) and single (`float32`)
|
||||
precision real parts of the BLAS API.
|
||||
|
||||
```Go
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"gonum.org/v1/gonum/blas/blas64"
|
||||
)
|
||||
|
||||
func main() {
|
||||
v := blas64.Vector{Inc: 1, Data: []float64{1, 1, 1}}
|
||||
fmt.Println("v has length:", blas64.Nrm2(len(v.Data), v))
|
||||
}
|
||||
```
|
||||
|
||||
### blas/cblas128 and blas/cblas64
|
||||
|
||||
Wrappers for an implementation of the double (i.e., `complex128`) and single (`complex64`)
|
||||
precision complex parts of the blas API.
|
||||
|
||||
Currently blas/cblas64 and blas/cblas128 require gonum.org/v1/netlib/blas.
|
283
vendor/gonum.org/v1/gonum/blas/blas.go
generated
vendored
Normal file
283
vendor/gonum.org/v1/gonum/blas/blas.go
generated
vendored
Normal file
@@ -0,0 +1,283 @@
|
||||
// Copyright ©2013 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:generate ./conversions.bash
|
||||
|
||||
package blas
|
||||
|
||||
// Flag constants indicate Givens transformation H matrix state.
|
||||
type Flag int
|
||||
|
||||
const (
|
||||
Identity Flag = -2 // H is the identity matrix; no rotation is needed.
|
||||
Rescaling Flag = -1 // H specifies rescaling.
|
||||
OffDiagonal Flag = 0 // Off-diagonal elements of H are non-unit.
|
||||
Diagonal Flag = 1 // Diagonal elements of H are non-unit.
|
||||
)
|
||||
|
||||
// SrotmParams contains Givens transformation parameters returned
|
||||
// by the Float32 Srotm method.
|
||||
type SrotmParams struct {
|
||||
Flag
|
||||
H [4]float32 // Column-major 2 by 2 matrix.
|
||||
}
|
||||
|
||||
// DrotmParams contains Givens transformation parameters returned
|
||||
// by the Float64 Drotm method.
|
||||
type DrotmParams struct {
|
||||
Flag
|
||||
H [4]float64 // Column-major 2 by 2 matrix.
|
||||
}
|
||||
|
||||
// Transpose specifies the transposition operation of a matrix.
|
||||
type Transpose byte
|
||||
|
||||
const (
|
||||
NoTrans Transpose = 'N'
|
||||
Trans Transpose = 'T'
|
||||
ConjTrans Transpose = 'C'
|
||||
)
|
||||
|
||||
// Uplo specifies whether a matrix is upper or lower triangular.
|
||||
type Uplo byte
|
||||
|
||||
const (
|
||||
Upper Uplo = 'U'
|
||||
Lower Uplo = 'L'
|
||||
All Uplo = 'A'
|
||||
)
|
||||
|
||||
// Diag specifies whether a matrix is unit triangular.
|
||||
type Diag byte
|
||||
|
||||
const (
|
||||
NonUnit Diag = 'N'
|
||||
Unit Diag = 'U'
|
||||
)
|
||||
|
||||
// Side specifies from which side a multiplication operation is performed.
|
||||
type Side byte
|
||||
|
||||
const (
|
||||
Left Side = 'L'
|
||||
Right Side = 'R'
|
||||
)
|
||||
|
||||
// Float32 implements the single precision real BLAS routines.
|
||||
type Float32 interface {
|
||||
Float32Level1
|
||||
Float32Level2
|
||||
Float32Level3
|
||||
}
|
||||
|
||||
// Float32Level1 implements the single precision real BLAS Level 1 routines.
|
||||
type Float32Level1 interface {
|
||||
Sdsdot(n int, alpha float32, x []float32, incX int, y []float32, incY int) float32
|
||||
Dsdot(n int, x []float32, incX int, y []float32, incY int) float64
|
||||
Sdot(n int, x []float32, incX int, y []float32, incY int) float32
|
||||
Snrm2(n int, x []float32, incX int) float32
|
||||
Sasum(n int, x []float32, incX int) float32
|
||||
Isamax(n int, x []float32, incX int) int
|
||||
Sswap(n int, x []float32, incX int, y []float32, incY int)
|
||||
Scopy(n int, x []float32, incX int, y []float32, incY int)
|
||||
Saxpy(n int, alpha float32, x []float32, incX int, y []float32, incY int)
|
||||
Srotg(a, b float32) (c, s, r, z float32)
|
||||
Srotmg(d1, d2, b1, b2 float32) (p SrotmParams, rd1, rd2, rb1 float32)
|
||||
Srot(n int, x []float32, incX int, y []float32, incY int, c, s float32)
|
||||
Srotm(n int, x []float32, incX int, y []float32, incY int, p SrotmParams)
|
||||
Sscal(n int, alpha float32, x []float32, incX int)
|
||||
}
|
||||
|
||||
// Float32Level2 implements the single precision real BLAS Level 2 routines.
|
||||
type Float32Level2 interface {
|
||||
Sgemv(tA Transpose, m, n int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int)
|
||||
Sgbmv(tA Transpose, m, n, kL, kU int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int)
|
||||
Strmv(ul Uplo, tA Transpose, d Diag, n int, a []float32, lda int, x []float32, incX int)
|
||||
Stbmv(ul Uplo, tA Transpose, d Diag, n, k int, a []float32, lda int, x []float32, incX int)
|
||||
Stpmv(ul Uplo, tA Transpose, d Diag, n int, ap []float32, x []float32, incX int)
|
||||
Strsv(ul Uplo, tA Transpose, d Diag, n int, a []float32, lda int, x []float32, incX int)
|
||||
Stbsv(ul Uplo, tA Transpose, d Diag, n, k int, a []float32, lda int, x []float32, incX int)
|
||||
Stpsv(ul Uplo, tA Transpose, d Diag, n int, ap []float32, x []float32, incX int)
|
||||
Ssymv(ul Uplo, n int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int)
|
||||
Ssbmv(ul Uplo, n, k int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int)
|
||||
Sspmv(ul Uplo, n int, alpha float32, ap []float32, x []float32, incX int, beta float32, y []float32, incY int)
|
||||
Sger(m, n int, alpha float32, x []float32, incX int, y []float32, incY int, a []float32, lda int)
|
||||
Ssyr(ul Uplo, n int, alpha float32, x []float32, incX int, a []float32, lda int)
|
||||
Sspr(ul Uplo, n int, alpha float32, x []float32, incX int, ap []float32)
|
||||
Ssyr2(ul Uplo, n int, alpha float32, x []float32, incX int, y []float32, incY int, a []float32, lda int)
|
||||
Sspr2(ul Uplo, n int, alpha float32, x []float32, incX int, y []float32, incY int, a []float32)
|
||||
}
|
||||
|
||||
// Float32Level3 implements the single precision real BLAS Level 3 routines.
|
||||
type Float32Level3 interface {
|
||||
Sgemm(tA, tB Transpose, m, n, k int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int)
|
||||
Ssymm(s Side, ul Uplo, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int)
|
||||
Ssyrk(ul Uplo, t Transpose, n, k int, alpha float32, a []float32, lda int, beta float32, c []float32, ldc int)
|
||||
Ssyr2k(ul Uplo, t Transpose, n, k int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int)
|
||||
Strmm(s Side, ul Uplo, tA Transpose, d Diag, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int)
|
||||
Strsm(s Side, ul Uplo, tA Transpose, d Diag, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int)
|
||||
}
|
||||
|
||||
// Float64 implements the single precision real BLAS routines.
|
||||
type Float64 interface {
|
||||
Float64Level1
|
||||
Float64Level2
|
||||
Float64Level3
|
||||
}
|
||||
|
||||
// Float64Level1 implements the double precision real BLAS Level 1 routines.
|
||||
type Float64Level1 interface {
|
||||
Ddot(n int, x []float64, incX int, y []float64, incY int) float64
|
||||
Dnrm2(n int, x []float64, incX int) float64
|
||||
Dasum(n int, x []float64, incX int) float64
|
||||
Idamax(n int, x []float64, incX int) int
|
||||
Dswap(n int, x []float64, incX int, y []float64, incY int)
|
||||
Dcopy(n int, x []float64, incX int, y []float64, incY int)
|
||||
Daxpy(n int, alpha float64, x []float64, incX int, y []float64, incY int)
|
||||
Drotg(a, b float64) (c, s, r, z float64)
|
||||
Drotmg(d1, d2, b1, b2 float64) (p DrotmParams, rd1, rd2, rb1 float64)
|
||||
Drot(n int, x []float64, incX int, y []float64, incY int, c float64, s float64)
|
||||
Drotm(n int, x []float64, incX int, y []float64, incY int, p DrotmParams)
|
||||
Dscal(n int, alpha float64, x []float64, incX int)
|
||||
}
|
||||
|
||||
// Float64Level2 implements the double precision real BLAS Level 2 routines.
|
||||
type Float64Level2 interface {
|
||||
Dgemv(tA Transpose, m, n int, alpha float64, a []float64, lda int, x []float64, incX int, beta float64, y []float64, incY int)
|
||||
Dgbmv(tA Transpose, m, n, kL, kU int, alpha float64, a []float64, lda int, x []float64, incX int, beta float64, y []float64, incY int)
|
||||
Dtrmv(ul Uplo, tA Transpose, d Diag, n int, a []float64, lda int, x []float64, incX int)
|
||||
Dtbmv(ul Uplo, tA Transpose, d Diag, n, k int, a []float64, lda int, x []float64, incX int)
|
||||
Dtpmv(ul Uplo, tA Transpose, d Diag, n int, ap []float64, x []float64, incX int)
|
||||
Dtrsv(ul Uplo, tA Transpose, d Diag, n int, a []float64, lda int, x []float64, incX int)
|
||||
Dtbsv(ul Uplo, tA Transpose, d Diag, n, k int, a []float64, lda int, x []float64, incX int)
|
||||
Dtpsv(ul Uplo, tA Transpose, d Diag, n int, ap []float64, x []float64, incX int)
|
||||
Dsymv(ul Uplo, n int, alpha float64, a []float64, lda int, x []float64, incX int, beta float64, y []float64, incY int)
|
||||
Dsbmv(ul Uplo, n, k int, alpha float64, a []float64, lda int, x []float64, incX int, beta float64, y []float64, incY int)
|
||||
Dspmv(ul Uplo, n int, alpha float64, ap []float64, x []float64, incX int, beta float64, y []float64, incY int)
|
||||
Dger(m, n int, alpha float64, x []float64, incX int, y []float64, incY int, a []float64, lda int)
|
||||
Dsyr(ul Uplo, n int, alpha float64, x []float64, incX int, a []float64, lda int)
|
||||
Dspr(ul Uplo, n int, alpha float64, x []float64, incX int, ap []float64)
|
||||
Dsyr2(ul Uplo, n int, alpha float64, x []float64, incX int, y []float64, incY int, a []float64, lda int)
|
||||
Dspr2(ul Uplo, n int, alpha float64, x []float64, incX int, y []float64, incY int, a []float64)
|
||||
}
|
||||
|
||||
// Float64Level3 implements the double precision real BLAS Level 3 routines.
|
||||
type Float64Level3 interface {
|
||||
Dgemm(tA, tB Transpose, m, n, k int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int)
|
||||
Dsymm(s Side, ul Uplo, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int)
|
||||
Dsyrk(ul Uplo, t Transpose, n, k int, alpha float64, a []float64, lda int, beta float64, c []float64, ldc int)
|
||||
Dsyr2k(ul Uplo, t Transpose, n, k int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int)
|
||||
Dtrmm(s Side, ul Uplo, tA Transpose, d Diag, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int)
|
||||
Dtrsm(s Side, ul Uplo, tA Transpose, d Diag, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int)
|
||||
}
|
||||
|
||||
// Complex64 implements the single precision complex BLAS routines.
|
||||
type Complex64 interface {
|
||||
Complex64Level1
|
||||
Complex64Level2
|
||||
Complex64Level3
|
||||
}
|
||||
|
||||
// Complex64Level1 implements the single precision complex BLAS Level 1 routines.
|
||||
type Complex64Level1 interface {
|
||||
Cdotu(n int, x []complex64, incX int, y []complex64, incY int) (dotu complex64)
|
||||
Cdotc(n int, x []complex64, incX int, y []complex64, incY int) (dotc complex64)
|
||||
Scnrm2(n int, x []complex64, incX int) float32
|
||||
Scasum(n int, x []complex64, incX int) float32
|
||||
Icamax(n int, x []complex64, incX int) int
|
||||
Cswap(n int, x []complex64, incX int, y []complex64, incY int)
|
||||
Ccopy(n int, x []complex64, incX int, y []complex64, incY int)
|
||||
Caxpy(n int, alpha complex64, x []complex64, incX int, y []complex64, incY int)
|
||||
Cscal(n int, alpha complex64, x []complex64, incX int)
|
||||
Csscal(n int, alpha float32, x []complex64, incX int)
|
||||
}
|
||||
|
||||
// Complex64Level2 implements the single precision complex BLAS routines Level 2 routines.
|
||||
type Complex64Level2 interface {
|
||||
Cgemv(tA Transpose, m, n int, alpha complex64, a []complex64, lda int, x []complex64, incX int, beta complex64, y []complex64, incY int)
|
||||
Cgbmv(tA Transpose, m, n, kL, kU int, alpha complex64, a []complex64, lda int, x []complex64, incX int, beta complex64, y []complex64, incY int)
|
||||
Ctrmv(ul Uplo, tA Transpose, d Diag, n int, a []complex64, lda int, x []complex64, incX int)
|
||||
Ctbmv(ul Uplo, tA Transpose, d Diag, n, k int, a []complex64, lda int, x []complex64, incX int)
|
||||
Ctpmv(ul Uplo, tA Transpose, d Diag, n int, ap []complex64, x []complex64, incX int)
|
||||
Ctrsv(ul Uplo, tA Transpose, d Diag, n int, a []complex64, lda int, x []complex64, incX int)
|
||||
Ctbsv(ul Uplo, tA Transpose, d Diag, n, k int, a []complex64, lda int, x []complex64, incX int)
|
||||
Ctpsv(ul Uplo, tA Transpose, d Diag, n int, ap []complex64, x []complex64, incX int)
|
||||
Chemv(ul Uplo, n int, alpha complex64, a []complex64, lda int, x []complex64, incX int, beta complex64, y []complex64, incY int)
|
||||
Chbmv(ul Uplo, n, k int, alpha complex64, a []complex64, lda int, x []complex64, incX int, beta complex64, y []complex64, incY int)
|
||||
Chpmv(ul Uplo, n int, alpha complex64, ap []complex64, x []complex64, incX int, beta complex64, y []complex64, incY int)
|
||||
Cgeru(m, n int, alpha complex64, x []complex64, incX int, y []complex64, incY int, a []complex64, lda int)
|
||||
Cgerc(m, n int, alpha complex64, x []complex64, incX int, y []complex64, incY int, a []complex64, lda int)
|
||||
Cher(ul Uplo, n int, alpha float32, x []complex64, incX int, a []complex64, lda int)
|
||||
Chpr(ul Uplo, n int, alpha float32, x []complex64, incX int, a []complex64)
|
||||
Cher2(ul Uplo, n int, alpha complex64, x []complex64, incX int, y []complex64, incY int, a []complex64, lda int)
|
||||
Chpr2(ul Uplo, n int, alpha complex64, x []complex64, incX int, y []complex64, incY int, ap []complex64)
|
||||
}
|
||||
|
||||
// Complex64Level3 implements the single precision complex BLAS Level 3 routines.
|
||||
type Complex64Level3 interface {
|
||||
Cgemm(tA, tB Transpose, m, n, k int, alpha complex64, a []complex64, lda int, b []complex64, ldb int, beta complex64, c []complex64, ldc int)
|
||||
Csymm(s Side, ul Uplo, m, n int, alpha complex64, a []complex64, lda int, b []complex64, ldb int, beta complex64, c []complex64, ldc int)
|
||||
Csyrk(ul Uplo, t Transpose, n, k int, alpha complex64, a []complex64, lda int, beta complex64, c []complex64, ldc int)
|
||||
Csyr2k(ul Uplo, t Transpose, n, k int, alpha complex64, a []complex64, lda int, b []complex64, ldb int, beta complex64, c []complex64, ldc int)
|
||||
Ctrmm(s Side, ul Uplo, tA Transpose, d Diag, m, n int, alpha complex64, a []complex64, lda int, b []complex64, ldb int)
|
||||
Ctrsm(s Side, ul Uplo, tA Transpose, d Diag, m, n int, alpha complex64, a []complex64, lda int, b []complex64, ldb int)
|
||||
Chemm(s Side, ul Uplo, m, n int, alpha complex64, a []complex64, lda int, b []complex64, ldb int, beta complex64, c []complex64, ldc int)
|
||||
Cherk(ul Uplo, t Transpose, n, k int, alpha float32, a []complex64, lda int, beta float32, c []complex64, ldc int)
|
||||
Cher2k(ul Uplo, t Transpose, n, k int, alpha complex64, a []complex64, lda int, b []complex64, ldb int, beta float32, c []complex64, ldc int)
|
||||
}
|
||||
|
||||
// Complex128 implements the double precision complex BLAS routines.
|
||||
type Complex128 interface {
|
||||
Complex128Level1
|
||||
Complex128Level2
|
||||
Complex128Level3
|
||||
}
|
||||
|
||||
// Complex128Level1 implements the double precision complex BLAS Level 1 routines.
|
||||
type Complex128Level1 interface {
|
||||
Zdotu(n int, x []complex128, incX int, y []complex128, incY int) (dotu complex128)
|
||||
Zdotc(n int, x []complex128, incX int, y []complex128, incY int) (dotc complex128)
|
||||
Dznrm2(n int, x []complex128, incX int) float64
|
||||
Dzasum(n int, x []complex128, incX int) float64
|
||||
Izamax(n int, x []complex128, incX int) int
|
||||
Zswap(n int, x []complex128, incX int, y []complex128, incY int)
|
||||
Zcopy(n int, x []complex128, incX int, y []complex128, incY int)
|
||||
Zaxpy(n int, alpha complex128, x []complex128, incX int, y []complex128, incY int)
|
||||
Zscal(n int, alpha complex128, x []complex128, incX int)
|
||||
Zdscal(n int, alpha float64, x []complex128, incX int)
|
||||
}
|
||||
|
||||
// Complex128Level2 implements the double precision complex BLAS Level 2 routines.
|
||||
type Complex128Level2 interface {
|
||||
Zgemv(tA Transpose, m, n int, alpha complex128, a []complex128, lda int, x []complex128, incX int, beta complex128, y []complex128, incY int)
|
||||
Zgbmv(tA Transpose, m, n int, kL int, kU int, alpha complex128, a []complex128, lda int, x []complex128, incX int, beta complex128, y []complex128, incY int)
|
||||
Ztrmv(ul Uplo, tA Transpose, d Diag, n int, a []complex128, lda int, x []complex128, incX int)
|
||||
Ztbmv(ul Uplo, tA Transpose, d Diag, n, k int, a []complex128, lda int, x []complex128, incX int)
|
||||
Ztpmv(ul Uplo, tA Transpose, d Diag, n int, ap []complex128, x []complex128, incX int)
|
||||
Ztrsv(ul Uplo, tA Transpose, d Diag, n int, a []complex128, lda int, x []complex128, incX int)
|
||||
Ztbsv(ul Uplo, tA Transpose, d Diag, n, k int, a []complex128, lda int, x []complex128, incX int)
|
||||
Ztpsv(ul Uplo, tA Transpose, d Diag, n int, ap []complex128, x []complex128, incX int)
|
||||
Zhemv(ul Uplo, n int, alpha complex128, a []complex128, lda int, x []complex128, incX int, beta complex128, y []complex128, incY int)
|
||||
Zhbmv(ul Uplo, n, k int, alpha complex128, a []complex128, lda int, x []complex128, incX int, beta complex128, y []complex128, incY int)
|
||||
Zhpmv(ul Uplo, n int, alpha complex128, ap []complex128, x []complex128, incX int, beta complex128, y []complex128, incY int)
|
||||
Zgeru(m, n int, alpha complex128, x []complex128, incX int, y []complex128, incY int, a []complex128, lda int)
|
||||
Zgerc(m, n int, alpha complex128, x []complex128, incX int, y []complex128, incY int, a []complex128, lda int)
|
||||
Zher(ul Uplo, n int, alpha float64, x []complex128, incX int, a []complex128, lda int)
|
||||
Zhpr(ul Uplo, n int, alpha float64, x []complex128, incX int, a []complex128)
|
||||
Zher2(ul Uplo, n int, alpha complex128, x []complex128, incX int, y []complex128, incY int, a []complex128, lda int)
|
||||
Zhpr2(ul Uplo, n int, alpha complex128, x []complex128, incX int, y []complex128, incY int, ap []complex128)
|
||||
}
|
||||
|
||||
// Complex128Level3 implements the double precision complex BLAS Level 3 routines.
|
||||
type Complex128Level3 interface {
|
||||
Zgemm(tA, tB Transpose, m, n, k int, alpha complex128, a []complex128, lda int, b []complex128, ldb int, beta complex128, c []complex128, ldc int)
|
||||
Zsymm(s Side, ul Uplo, m, n int, alpha complex128, a []complex128, lda int, b []complex128, ldb int, beta complex128, c []complex128, ldc int)
|
||||
Zsyrk(ul Uplo, t Transpose, n, k int, alpha complex128, a []complex128, lda int, beta complex128, c []complex128, ldc int)
|
||||
Zsyr2k(ul Uplo, t Transpose, n, k int, alpha complex128, a []complex128, lda int, b []complex128, ldb int, beta complex128, c []complex128, ldc int)
|
||||
Ztrmm(s Side, ul Uplo, tA Transpose, d Diag, m, n int, alpha complex128, a []complex128, lda int, b []complex128, ldb int)
|
||||
Ztrsm(s Side, ul Uplo, tA Transpose, d Diag, m, n int, alpha complex128, a []complex128, lda int, b []complex128, ldb int)
|
||||
Zhemm(s Side, ul Uplo, m, n int, alpha complex128, a []complex128, lda int, b []complex128, ldb int, beta complex128, c []complex128, ldc int)
|
||||
Zherk(ul Uplo, t Transpose, n, k int, alpha float64, a []complex128, lda int, beta float64, c []complex128, ldc int)
|
||||
Zher2k(ul Uplo, t Transpose, n, k int, alpha complex128, a []complex128, lda int, b []complex128, ldb int, beta float64, c []complex128, ldc int)
|
||||
}
|
469
vendor/gonum.org/v1/gonum/blas/blas64/blas64.go
generated
vendored
Normal file
469
vendor/gonum.org/v1/gonum/blas/blas64/blas64.go
generated
vendored
Normal file
@@ -0,0 +1,469 @@
|
||||
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package blas64
|
||||
|
||||
import (
|
||||
"gonum.org/v1/gonum/blas"
|
||||
"gonum.org/v1/gonum/blas/gonum"
|
||||
)
|
||||
|
||||
var blas64 blas.Float64 = gonum.Implementation{}
|
||||
|
||||
// Use sets the BLAS float64 implementation to be used by subsequent BLAS calls.
|
||||
// The default implementation is
|
||||
// gonum.org/v1/gonum/blas/gonum.Implementation.
|
||||
func Use(b blas.Float64) {
|
||||
blas64 = b
|
||||
}
|
||||
|
||||
// Implementation returns the current BLAS float64 implementation.
|
||||
//
|
||||
// Implementation allows direct calls to the current the BLAS float64 implementation
|
||||
// giving finer control of parameters.
|
||||
func Implementation() blas.Float64 {
|
||||
return blas64
|
||||
}
|
||||
|
||||
// Vector represents a vector with an associated element increment.
|
||||
type Vector struct {
|
||||
N int
|
||||
Data []float64
|
||||
Inc int
|
||||
}
|
||||
|
||||
// General represents a matrix using the conventional storage scheme.
|
||||
type General struct {
|
||||
Rows, Cols int
|
||||
Data []float64
|
||||
Stride int
|
||||
}
|
||||
|
||||
// Band represents a band matrix using the band storage scheme.
|
||||
type Band struct {
|
||||
Rows, Cols int
|
||||
KL, KU int
|
||||
Data []float64
|
||||
Stride int
|
||||
}
|
||||
|
||||
// Triangular represents a triangular matrix using the conventional storage scheme.
|
||||
type Triangular struct {
|
||||
Uplo blas.Uplo
|
||||
Diag blas.Diag
|
||||
N int
|
||||
Data []float64
|
||||
Stride int
|
||||
}
|
||||
|
||||
// TriangularBand represents a triangular matrix using the band storage scheme.
|
||||
type TriangularBand struct {
|
||||
Uplo blas.Uplo
|
||||
Diag blas.Diag
|
||||
N, K int
|
||||
Data []float64
|
||||
Stride int
|
||||
}
|
||||
|
||||
// TriangularPacked represents a triangular matrix using the packed storage scheme.
|
||||
type TriangularPacked struct {
|
||||
Uplo blas.Uplo
|
||||
Diag blas.Diag
|
||||
N int
|
||||
Data []float64
|
||||
}
|
||||
|
||||
// Symmetric represents a symmetric matrix using the conventional storage scheme.
|
||||
type Symmetric struct {
|
||||
Uplo blas.Uplo
|
||||
N int
|
||||
Data []float64
|
||||
Stride int
|
||||
}
|
||||
|
||||
// SymmetricBand represents a symmetric matrix using the band storage scheme.
|
||||
type SymmetricBand struct {
|
||||
Uplo blas.Uplo
|
||||
N, K int
|
||||
Data []float64
|
||||
Stride int
|
||||
}
|
||||
|
||||
// SymmetricPacked represents a symmetric matrix using the packed storage scheme.
|
||||
type SymmetricPacked struct {
|
||||
Uplo blas.Uplo
|
||||
N int
|
||||
Data []float64
|
||||
}
|
||||
|
||||
// Level 1
|
||||
|
||||
const (
|
||||
negInc = "blas64: negative vector increment"
|
||||
badLength = "blas64: vector length mismatch"
|
||||
)
|
||||
|
||||
// Dot computes the dot product of the two vectors:
|
||||
// \sum_i x[i]*y[i].
|
||||
func Dot(x, y Vector) float64 {
|
||||
if x.N != y.N {
|
||||
panic(badLength)
|
||||
}
|
||||
return blas64.Ddot(x.N, x.Data, x.Inc, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Nrm2 computes the Euclidean norm of the vector x:
|
||||
// sqrt(\sum_i x[i]*x[i]).
|
||||
//
|
||||
// Nrm2 will panic if the vector increment is negative.
|
||||
func Nrm2(x Vector) float64 {
|
||||
if x.Inc < 0 {
|
||||
panic(negInc)
|
||||
}
|
||||
return blas64.Dnrm2(x.N, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Asum computes the sum of the absolute values of the elements of x:
|
||||
// \sum_i |x[i]|.
|
||||
//
|
||||
// Asum will panic if the vector increment is negative.
|
||||
func Asum(x Vector) float64 {
|
||||
if x.Inc < 0 {
|
||||
panic(negInc)
|
||||
}
|
||||
return blas64.Dasum(x.N, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Iamax returns the index of an element of x with the largest absolute value.
|
||||
// If there are multiple such indices the earliest is returned.
|
||||
// Iamax returns -1 if n == 0.
|
||||
//
|
||||
// Iamax will panic if the vector increment is negative.
|
||||
func Iamax(x Vector) int {
|
||||
if x.Inc < 0 {
|
||||
panic(negInc)
|
||||
}
|
||||
return blas64.Idamax(x.N, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Swap exchanges the elements of the two vectors:
|
||||
// x[i], y[i] = y[i], x[i] for all i.
|
||||
func Swap(x, y Vector) {
|
||||
if x.N != y.N {
|
||||
panic(badLength)
|
||||
}
|
||||
blas64.Dswap(x.N, x.Data, x.Inc, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Copy copies the elements of x into the elements of y:
|
||||
// y[i] = x[i] for all i.
|
||||
// Copy requires that the lengths of x and y match and will panic otherwise.
|
||||
func Copy(x, y Vector) {
|
||||
if x.N != y.N {
|
||||
panic(badLength)
|
||||
}
|
||||
blas64.Dcopy(x.N, x.Data, x.Inc, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Axpy adds x scaled by alpha to y:
|
||||
// y[i] += alpha*x[i] for all i.
|
||||
func Axpy(alpha float64, x, y Vector) {
|
||||
if x.N != y.N {
|
||||
panic(badLength)
|
||||
}
|
||||
blas64.Daxpy(x.N, alpha, x.Data, x.Inc, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Rotg computes the parameters of a Givens plane rotation so that
|
||||
// ⎡ c s⎤ ⎡a⎤ ⎡r⎤
|
||||
// ⎣-s c⎦ * ⎣b⎦ = ⎣0⎦
|
||||
// where a and b are the Cartesian coordinates of a given point.
|
||||
// c, s, and r are defined as
|
||||
// r = ±Sqrt(a^2 + b^2),
|
||||
// c = a/r, the cosine of the rotation angle,
|
||||
// s = a/r, the sine of the rotation angle,
|
||||
// and z is defined such that
|
||||
// if |a| > |b|, z = s,
|
||||
// otherwise if c != 0, z = 1/c,
|
||||
// otherwise z = 1.
|
||||
func Rotg(a, b float64) (c, s, r, z float64) {
|
||||
return blas64.Drotg(a, b)
|
||||
}
|
||||
|
||||
// Rotmg computes the modified Givens rotation. See
|
||||
// http://www.netlib.org/lapack/explore-html/df/deb/drotmg_8f.html
|
||||
// for more details.
|
||||
func Rotmg(d1, d2, b1, b2 float64) (p blas.DrotmParams, rd1, rd2, rb1 float64) {
|
||||
return blas64.Drotmg(d1, d2, b1, b2)
|
||||
}
|
||||
|
||||
// Rot applies a plane transformation to n points represented by the vectors x
|
||||
// and y:
|
||||
// x[i] = c*x[i] + s*y[i],
|
||||
// y[i] = -s*x[i] + c*y[i], for all i.
|
||||
func Rot(x, y Vector, c, s float64) {
|
||||
if x.N != y.N {
|
||||
panic(badLength)
|
||||
}
|
||||
blas64.Drot(x.N, x.Data, x.Inc, y.Data, y.Inc, c, s)
|
||||
}
|
||||
|
||||
// Rotm applies the modified Givens rotation to n points represented by the
|
||||
// vectors x and y.
|
||||
func Rotm(x, y Vector, p blas.DrotmParams) {
|
||||
if x.N != y.N {
|
||||
panic(badLength)
|
||||
}
|
||||
blas64.Drotm(x.N, x.Data, x.Inc, y.Data, y.Inc, p)
|
||||
}
|
||||
|
||||
// Scal scales the vector x by alpha:
|
||||
// x[i] *= alpha for all i.
|
||||
//
|
||||
// Scal will panic if the vector increment is negative.
|
||||
func Scal(alpha float64, x Vector) {
|
||||
if x.Inc < 0 {
|
||||
panic(negInc)
|
||||
}
|
||||
blas64.Dscal(x.N, alpha, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Level 2
|
||||
|
||||
// Gemv computes
|
||||
// y = alpha * A * x + beta * y, if t == blas.NoTrans,
|
||||
// y = alpha * A^T * x + beta * y, if t == blas.Trans or blas.ConjTrans,
|
||||
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
|
||||
func Gemv(t blas.Transpose, alpha float64, a General, x Vector, beta float64, y Vector) {
|
||||
blas64.Dgemv(t, a.Rows, a.Cols, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Gbmv computes
|
||||
// y = alpha * A * x + beta * y, if t == blas.NoTrans,
|
||||
// y = alpha * A^T * x + beta * y, if t == blas.Trans or blas.ConjTrans,
|
||||
// where A is an m×n band matrix, x and y are vectors, and alpha and beta are scalars.
|
||||
func Gbmv(t blas.Transpose, alpha float64, a Band, x Vector, beta float64, y Vector) {
|
||||
blas64.Dgbmv(t, a.Rows, a.Cols, a.KL, a.KU, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Trmv computes
|
||||
// x = A * x, if t == blas.NoTrans,
|
||||
// x = A^T * x, if t == blas.Trans or blas.ConjTrans,
|
||||
// where A is an n×n triangular matrix, and x is a vector.
|
||||
func Trmv(t blas.Transpose, a Triangular, x Vector) {
|
||||
blas64.Dtrmv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Tbmv computes
|
||||
// x = A * x, if t == blas.NoTrans,
|
||||
// x = A^T * x, if t == blas.Trans or blas.ConjTrans,
|
||||
// where A is an n×n triangular band matrix, and x is a vector.
|
||||
func Tbmv(t blas.Transpose, a TriangularBand, x Vector) {
|
||||
blas64.Dtbmv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Tpmv computes
|
||||
// x = A * x, if t == blas.NoTrans,
|
||||
// x = A^T * x, if t == blas.Trans or blas.ConjTrans,
|
||||
// where A is an n×n triangular matrix in packed format, and x is a vector.
|
||||
func Tpmv(t blas.Transpose, a TriangularPacked, x Vector) {
|
||||
blas64.Dtpmv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Trsv solves
|
||||
// A * x = b, if t == blas.NoTrans,
|
||||
// A^T * x = b, if t == blas.Trans or blas.ConjTrans,
|
||||
// where A is an n×n triangular matrix, and x and b are vectors.
|
||||
//
|
||||
// At entry to the function, x contains the values of b, and the result is
|
||||
// stored in-place into x.
|
||||
//
|
||||
// No test for singularity or near-singularity is included in this
|
||||
// routine. Such tests must be performed before calling this routine.
|
||||
func Trsv(t blas.Transpose, a Triangular, x Vector) {
|
||||
blas64.Dtrsv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Tbsv solves
|
||||
// A * x = b, if t == blas.NoTrans,
|
||||
// A^T * x = b, if t == blas.Trans or blas.ConjTrans,
|
||||
// where A is an n×n triangular band matrix, and x and b are vectors.
|
||||
//
|
||||
// At entry to the function, x contains the values of b, and the result is
|
||||
// stored in place into x.
|
||||
//
|
||||
// No test for singularity or near-singularity is included in this
|
||||
// routine. Such tests must be performed before calling this routine.
|
||||
func Tbsv(t blas.Transpose, a TriangularBand, x Vector) {
|
||||
blas64.Dtbsv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Tpsv solves
|
||||
// A * x = b, if t == blas.NoTrans,
|
||||
// A^T * x = b, if t == blas.Trans or blas.ConjTrans,
|
||||
// where A is an n×n triangular matrix in packed format, and x and b are
|
||||
// vectors.
|
||||
//
|
||||
// At entry to the function, x contains the values of b, and the result is
|
||||
// stored in place into x.
|
||||
//
|
||||
// No test for singularity or near-singularity is included in this
|
||||
// routine. Such tests must be performed before calling this routine.
|
||||
func Tpsv(t blas.Transpose, a TriangularPacked, x Vector) {
|
||||
blas64.Dtpsv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Symv computes
|
||||
// y = alpha * A * x + beta * y,
|
||||
// where A is an n×n symmetric matrix, x and y are vectors, and alpha and
|
||||
// beta are scalars.
|
||||
func Symv(alpha float64, a Symmetric, x Vector, beta float64, y Vector) {
|
||||
blas64.Dsymv(a.Uplo, a.N, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Sbmv performs
|
||||
// y = alpha * A * x + beta * y,
|
||||
// where A is an n×n symmetric band matrix, x and y are vectors, and alpha
|
||||
// and beta are scalars.
|
||||
func Sbmv(alpha float64, a SymmetricBand, x Vector, beta float64, y Vector) {
|
||||
blas64.Dsbmv(a.Uplo, a.N, a.K, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Spmv performs
|
||||
// y = alpha * A * x + beta * y,
|
||||
// where A is an n×n symmetric matrix in packed format, x and y are vectors,
|
||||
// and alpha and beta are scalars.
|
||||
func Spmv(alpha float64, a SymmetricPacked, x Vector, beta float64, y Vector) {
|
||||
blas64.Dspmv(a.Uplo, a.N, alpha, a.Data, x.Data, x.Inc, beta, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Ger performs a rank-1 update
|
||||
// A += alpha * x * y^T,
|
||||
// where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
|
||||
func Ger(alpha float64, x, y Vector, a General) {
|
||||
blas64.Dger(a.Rows, a.Cols, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
|
||||
}
|
||||
|
||||
// Syr performs a rank-1 update
|
||||
// A += alpha * x * x^T,
|
||||
// where A is an n×n symmetric matrix, x is a vector, and alpha is a scalar.
|
||||
func Syr(alpha float64, x Vector, a Symmetric) {
|
||||
blas64.Dsyr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data, a.Stride)
|
||||
}
|
||||
|
||||
// Spr performs the rank-1 update
|
||||
// A += alpha * x * x^T,
|
||||
// where A is an n×n symmetric matrix in packed format, x is a vector, and
|
||||
// alpha is a scalar.
|
||||
func Spr(alpha float64, x Vector, a SymmetricPacked) {
|
||||
blas64.Dspr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data)
|
||||
}
|
||||
|
||||
// Syr2 performs a rank-2 update
|
||||
// A += alpha * x * y^T + alpha * y * x^T,
|
||||
// where A is a symmetric n×n matrix, x and y are vectors, and alpha is a scalar.
|
||||
func Syr2(alpha float64, x, y Vector, a Symmetric) {
|
||||
blas64.Dsyr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
|
||||
}
|
||||
|
||||
// Spr2 performs a rank-2 update
|
||||
// A += alpha * x * y^T + alpha * y * x^T,
|
||||
// where A is an n×n symmetric matrix in packed format, x and y are vectors,
|
||||
// and alpha is a scalar.
|
||||
func Spr2(alpha float64, x, y Vector, a SymmetricPacked) {
|
||||
blas64.Dspr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data)
|
||||
}
|
||||
|
||||
// Level 3
|
||||
|
||||
// Gemm computes
|
||||
// C = alpha * A * B + beta * C,
|
||||
// where A, B, and C are dense matrices, and alpha and beta are scalars.
|
||||
// tA and tB specify whether A or B are transposed.
|
||||
func Gemm(tA, tB blas.Transpose, alpha float64, a, b General, beta float64, c General) {
|
||||
var m, n, k int
|
||||
if tA == blas.NoTrans {
|
||||
m, k = a.Rows, a.Cols
|
||||
} else {
|
||||
m, k = a.Cols, a.Rows
|
||||
}
|
||||
if tB == blas.NoTrans {
|
||||
n = b.Cols
|
||||
} else {
|
||||
n = b.Rows
|
||||
}
|
||||
blas64.Dgemm(tA, tB, m, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
|
||||
}
|
||||
|
||||
// Symm performs
|
||||
// C = alpha * A * B + beta * C, if s == blas.Left,
|
||||
// C = alpha * B * A + beta * C, if s == blas.Right,
|
||||
// where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and
|
||||
// alpha is a scalar.
|
||||
func Symm(s blas.Side, alpha float64, a Symmetric, b General, beta float64, c General) {
|
||||
var m, n int
|
||||
if s == blas.Left {
|
||||
m, n = a.N, b.Cols
|
||||
} else {
|
||||
m, n = b.Rows, a.N
|
||||
}
|
||||
blas64.Dsymm(s, a.Uplo, m, n, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
|
||||
}
|
||||
|
||||
// Syrk performs a symmetric rank-k update
|
||||
// C = alpha * A * A^T + beta * C, if t == blas.NoTrans,
|
||||
// C = alpha * A^T * A + beta * C, if t == blas.Trans or blas.ConjTrans,
|
||||
// where C is an n×n symmetric matrix, A is an n×k matrix if t == blas.NoTrans and
|
||||
// a k×n matrix otherwise, and alpha and beta are scalars.
|
||||
func Syrk(t blas.Transpose, alpha float64, a General, beta float64, c Symmetric) {
|
||||
var n, k int
|
||||
if t == blas.NoTrans {
|
||||
n, k = a.Rows, a.Cols
|
||||
} else {
|
||||
n, k = a.Cols, a.Rows
|
||||
}
|
||||
blas64.Dsyrk(c.Uplo, t, n, k, alpha, a.Data, a.Stride, beta, c.Data, c.Stride)
|
||||
}
|
||||
|
||||
// Syr2k performs a symmetric rank-2k update
|
||||
// C = alpha * A * B^T + alpha * B * A^T + beta * C, if t == blas.NoTrans,
|
||||
// C = alpha * A^T * B + alpha * B^T * A + beta * C, if t == blas.Trans or blas.ConjTrans,
|
||||
// where C is an n×n symmetric matrix, A and B are n×k matrices if t == NoTrans
|
||||
// and k×n matrices otherwise, and alpha and beta are scalars.
|
||||
func Syr2k(t blas.Transpose, alpha float64, a, b General, beta float64, c Symmetric) {
|
||||
var n, k int
|
||||
if t == blas.NoTrans {
|
||||
n, k = a.Rows, a.Cols
|
||||
} else {
|
||||
n, k = a.Cols, a.Rows
|
||||
}
|
||||
blas64.Dsyr2k(c.Uplo, t, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
|
||||
}
|
||||
|
||||
// Trmm performs
|
||||
// B = alpha * A * B, if tA == blas.NoTrans and s == blas.Left,
|
||||
// B = alpha * A^T * B, if tA == blas.Trans or blas.ConjTrans, and s == blas.Left,
|
||||
// B = alpha * B * A, if tA == blas.NoTrans and s == blas.Right,
|
||||
// B = alpha * B * A^T, if tA == blas.Trans or blas.ConjTrans, and s == blas.Right,
|
||||
// where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is
|
||||
// a scalar.
|
||||
func Trmm(s blas.Side, tA blas.Transpose, alpha float64, a Triangular, b General) {
|
||||
blas64.Dtrmm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
|
||||
}
|
||||
|
||||
// Trsm solves
|
||||
// A * X = alpha * B, if tA == blas.NoTrans and s == blas.Left,
|
||||
// A^T * X = alpha * B, if tA == blas.Trans or blas.ConjTrans, and s == blas.Left,
|
||||
// X * A = alpha * B, if tA == blas.NoTrans and s == blas.Right,
|
||||
// X * A^T = alpha * B, if tA == blas.Trans or blas.ConjTrans, and s == blas.Right,
|
||||
// where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and
|
||||
// alpha is a scalar.
|
||||
//
|
||||
// At entry to the function, X contains the values of B, and the result is
|
||||
// stored in-place into X.
|
||||
//
|
||||
// No check is made that A is invertible.
|
||||
func Trsm(s blas.Side, tA blas.Transpose, alpha float64, a Triangular, b General) {
|
||||
blas64.Dtrsm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
|
||||
}
|
277
vendor/gonum.org/v1/gonum/blas/blas64/conv.go
generated
vendored
Normal file
277
vendor/gonum.org/v1/gonum/blas/blas64/conv.go
generated
vendored
Normal file
@@ -0,0 +1,277 @@
|
||||
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package blas64
|
||||
|
||||
import "gonum.org/v1/gonum/blas"
|
||||
|
||||
// GeneralCols represents a matrix using the conventional column-major storage scheme.
|
||||
type GeneralCols General
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions as a and have adequate backing
|
||||
// data storage.
|
||||
func (t GeneralCols) From(a General) {
|
||||
if t.Rows != a.Rows || t.Cols != a.Cols {
|
||||
panic("blas64: mismatched dimension")
|
||||
}
|
||||
if len(t.Data) < (t.Cols-1)*t.Stride+t.Rows {
|
||||
panic("blas64: short data slice")
|
||||
}
|
||||
for i := 0; i < a.Rows; i++ {
|
||||
for j, v := range a.Data[i*a.Stride : i*a.Stride+a.Cols] {
|
||||
t.Data[i+j*t.Stride] = v
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions as a and have adequate backing
|
||||
// data storage.
|
||||
func (t General) From(a GeneralCols) {
|
||||
if t.Rows != a.Rows || t.Cols != a.Cols {
|
||||
panic("blas64: mismatched dimension")
|
||||
}
|
||||
if len(t.Data) < (t.Rows-1)*t.Stride+t.Cols {
|
||||
panic("blas64: short data slice")
|
||||
}
|
||||
for j := 0; j < a.Cols; j++ {
|
||||
for i, v := range a.Data[j*a.Stride : j*a.Stride+a.Rows] {
|
||||
t.Data[i*t.Stride+j] = v
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TriangularCols represents a matrix using the conventional column-major storage scheme.
|
||||
type TriangularCols Triangular
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions, uplo and diag as a and have
|
||||
// adequate backing data storage.
|
||||
func (t TriangularCols) From(a Triangular) {
|
||||
if t.N != a.N {
|
||||
panic("blas64: mismatched dimension")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("blas64: mismatched BLAS uplo")
|
||||
}
|
||||
if t.Diag != a.Diag {
|
||||
panic("blas64: mismatched BLAS diag")
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("blas64: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := i; j < a.N; j++ {
|
||||
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
|
||||
}
|
||||
}
|
||||
case blas.Lower:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := 0; j <= i; j++ {
|
||||
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
|
||||
}
|
||||
}
|
||||
case blas.All:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := 0; j < a.N; j++ {
|
||||
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions, uplo and diag as a and have
|
||||
// adequate backing data storage.
|
||||
func (t Triangular) From(a TriangularCols) {
|
||||
if t.N != a.N {
|
||||
panic("blas64: mismatched dimension")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("blas64: mismatched BLAS uplo")
|
||||
}
|
||||
if t.Diag != a.Diag {
|
||||
panic("blas64: mismatched BLAS diag")
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("blas64: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := i; j < a.N; j++ {
|
||||
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
|
||||
}
|
||||
}
|
||||
case blas.Lower:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := 0; j <= i; j++ {
|
||||
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
|
||||
}
|
||||
}
|
||||
case blas.All:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := 0; j < a.N; j++ {
|
||||
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// BandCols represents a matrix using the band column-major storage scheme.
|
||||
type BandCols Band
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions and bandwidth as a and have
|
||||
// adequate backing data storage.
|
||||
func (t BandCols) From(a Band) {
|
||||
if t.Rows != a.Rows || t.Cols != a.Cols {
|
||||
panic("blas64: mismatched dimension")
|
||||
}
|
||||
if t.KL != a.KL || t.KU != a.KU {
|
||||
panic("blas64: mismatched bandwidth")
|
||||
}
|
||||
if a.Stride < a.KL+a.KU+1 {
|
||||
panic("blas64: short stride for source")
|
||||
}
|
||||
if t.Stride < t.KL+t.KU+1 {
|
||||
panic("blas64: short stride for destination")
|
||||
}
|
||||
for i := 0; i < a.Rows; i++ {
|
||||
for j := max(0, i-a.KL); j < min(i+a.KU+1, a.Cols); j++ {
|
||||
t.Data[i+t.KU-j+j*t.Stride] = a.Data[j+a.KL-i+i*a.Stride]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions and bandwidth as a and have
|
||||
// adequate backing data storage.
|
||||
func (t Band) From(a BandCols) {
|
||||
if t.Rows != a.Rows || t.Cols != a.Cols {
|
||||
panic("blas64: mismatched dimension")
|
||||
}
|
||||
if t.KL != a.KL || t.KU != a.KU {
|
||||
panic("blas64: mismatched bandwidth")
|
||||
}
|
||||
if a.Stride < a.KL+a.KU+1 {
|
||||
panic("blas64: short stride for source")
|
||||
}
|
||||
if t.Stride < t.KL+t.KU+1 {
|
||||
panic("blas64: short stride for destination")
|
||||
}
|
||||
for j := 0; j < a.Cols; j++ {
|
||||
for i := max(0, j-a.KU); i < min(j+a.KL+1, a.Rows); i++ {
|
||||
t.Data[j+a.KL-i+i*a.Stride] = a.Data[i+t.KU-j+j*t.Stride]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TriangularBandCols represents a symmetric matrix using the band column-major storage scheme.
|
||||
type TriangularBandCols TriangularBand
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions, bandwidth and uplo as a and
|
||||
// have adequate backing data storage.
|
||||
func (t TriangularBandCols) From(a TriangularBand) {
|
||||
if t.N != a.N {
|
||||
panic("blas64: mismatched dimension")
|
||||
}
|
||||
if t.K != a.K {
|
||||
panic("blas64: mismatched bandwidth")
|
||||
}
|
||||
if a.Stride < a.K+1 {
|
||||
panic("blas64: short stride for source")
|
||||
}
|
||||
if t.Stride < t.K+1 {
|
||||
panic("blas64: short stride for destination")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("blas64: mismatched BLAS uplo")
|
||||
}
|
||||
if t.Diag != a.Diag {
|
||||
panic("blas64: mismatched BLAS diag")
|
||||
}
|
||||
dst := BandCols{
|
||||
Rows: t.N, Cols: t.N,
|
||||
Stride: t.Stride,
|
||||
Data: t.Data,
|
||||
}
|
||||
src := Band{
|
||||
Rows: a.N, Cols: a.N,
|
||||
Stride: a.Stride,
|
||||
Data: a.Data,
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("blas64: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
dst.KU = t.K
|
||||
src.KU = a.K
|
||||
case blas.Lower:
|
||||
dst.KL = t.K
|
||||
src.KL = a.K
|
||||
}
|
||||
dst.From(src)
|
||||
}
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions, bandwidth and uplo as a and
|
||||
// have adequate backing data storage.
|
||||
func (t TriangularBand) From(a TriangularBandCols) {
|
||||
if t.N != a.N {
|
||||
panic("blas64: mismatched dimension")
|
||||
}
|
||||
if t.K != a.K {
|
||||
panic("blas64: mismatched bandwidth")
|
||||
}
|
||||
if a.Stride < a.K+1 {
|
||||
panic("blas64: short stride for source")
|
||||
}
|
||||
if t.Stride < t.K+1 {
|
||||
panic("blas64: short stride for destination")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("blas64: mismatched BLAS uplo")
|
||||
}
|
||||
if t.Diag != a.Diag {
|
||||
panic("blas64: mismatched BLAS diag")
|
||||
}
|
||||
dst := Band{
|
||||
Rows: t.N, Cols: t.N,
|
||||
Stride: t.Stride,
|
||||
Data: t.Data,
|
||||
}
|
||||
src := BandCols{
|
||||
Rows: a.N, Cols: a.N,
|
||||
Stride: a.Stride,
|
||||
Data: a.Data,
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("blas64: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
dst.KU = t.K
|
||||
src.KU = a.K
|
||||
case blas.Lower:
|
||||
dst.KL = t.K
|
||||
src.KL = a.K
|
||||
}
|
||||
dst.From(src)
|
||||
}
|
||||
|
||||
func min(a, b int) int {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
func max(a, b int) int {
|
||||
if a > b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
153
vendor/gonum.org/v1/gonum/blas/blas64/conv_symmetric.go
generated
vendored
Normal file
153
vendor/gonum.org/v1/gonum/blas/blas64/conv_symmetric.go
generated
vendored
Normal file
@@ -0,0 +1,153 @@
|
||||
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package blas64
|
||||
|
||||
import "gonum.org/v1/gonum/blas"
|
||||
|
||||
// SymmetricCols represents a matrix using the conventional column-major storage scheme.
|
||||
type SymmetricCols Symmetric
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions and uplo as a and have adequate
|
||||
// backing data storage.
|
||||
func (t SymmetricCols) From(a Symmetric) {
|
||||
if t.N != a.N {
|
||||
panic("blas64: mismatched dimension")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("blas64: mismatched BLAS uplo")
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("blas64: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := i; j < a.N; j++ {
|
||||
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
|
||||
}
|
||||
}
|
||||
case blas.Lower:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := 0; j <= i; j++ {
|
||||
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions and uplo as a and have adequate
|
||||
// backing data storage.
|
||||
func (t Symmetric) From(a SymmetricCols) {
|
||||
if t.N != a.N {
|
||||
panic("blas64: mismatched dimension")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("blas64: mismatched BLAS uplo")
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("blas64: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := i; j < a.N; j++ {
|
||||
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
|
||||
}
|
||||
}
|
||||
case blas.Lower:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := 0; j <= i; j++ {
|
||||
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// SymmetricBandCols represents a symmetric matrix using the band column-major storage scheme.
|
||||
type SymmetricBandCols SymmetricBand
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions, bandwidth and uplo as a and
|
||||
// have adequate backing data storage.
|
||||
func (t SymmetricBandCols) From(a SymmetricBand) {
|
||||
if t.N != a.N {
|
||||
panic("blas64: mismatched dimension")
|
||||
}
|
||||
if t.K != a.K {
|
||||
panic("blas64: mismatched bandwidth")
|
||||
}
|
||||
if a.Stride < a.K+1 {
|
||||
panic("blas64: short stride for source")
|
||||
}
|
||||
if t.Stride < t.K+1 {
|
||||
panic("blas64: short stride for destination")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("blas64: mismatched BLAS uplo")
|
||||
}
|
||||
dst := BandCols{
|
||||
Rows: t.N, Cols: t.N,
|
||||
Stride: t.Stride,
|
||||
Data: t.Data,
|
||||
}
|
||||
src := Band{
|
||||
Rows: a.N, Cols: a.N,
|
||||
Stride: a.Stride,
|
||||
Data: a.Data,
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("blas64: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
dst.KU = t.K
|
||||
src.KU = a.K
|
||||
case blas.Lower:
|
||||
dst.KL = t.K
|
||||
src.KL = a.K
|
||||
}
|
||||
dst.From(src)
|
||||
}
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions, bandwidth and uplo as a and
|
||||
// have adequate backing data storage.
|
||||
func (t SymmetricBand) From(a SymmetricBandCols) {
|
||||
if t.N != a.N {
|
||||
panic("blas64: mismatched dimension")
|
||||
}
|
||||
if t.K != a.K {
|
||||
panic("blas64: mismatched bandwidth")
|
||||
}
|
||||
if a.Stride < a.K+1 {
|
||||
panic("blas64: short stride for source")
|
||||
}
|
||||
if t.Stride < t.K+1 {
|
||||
panic("blas64: short stride for destination")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("blas64: mismatched BLAS uplo")
|
||||
}
|
||||
dst := Band{
|
||||
Rows: t.N, Cols: t.N,
|
||||
Stride: t.Stride,
|
||||
Data: t.Data,
|
||||
}
|
||||
src := BandCols{
|
||||
Rows: a.N, Cols: a.N,
|
||||
Stride: a.Stride,
|
||||
Data: a.Data,
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("blas64: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
dst.KU = t.K
|
||||
src.KU = a.K
|
||||
case blas.Lower:
|
||||
dst.KL = t.K
|
||||
src.KL = a.K
|
||||
}
|
||||
dst.From(src)
|
||||
}
|
6
vendor/gonum.org/v1/gonum/blas/blas64/doc.go
generated
vendored
Normal file
6
vendor/gonum.org/v1/gonum/blas/blas64/doc.go
generated
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
// Copyright ©2017 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package blas64 provides a simple interface to the float64 BLAS API.
|
||||
package blas64 // import "gonum.org/v1/gonum/blas/blas64"
|
508
vendor/gonum.org/v1/gonum/blas/cblas128/cblas128.go
generated
vendored
Normal file
508
vendor/gonum.org/v1/gonum/blas/cblas128/cblas128.go
generated
vendored
Normal file
@@ -0,0 +1,508 @@
|
||||
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package cblas128
|
||||
|
||||
import (
|
||||
"gonum.org/v1/gonum/blas"
|
||||
"gonum.org/v1/gonum/blas/gonum"
|
||||
)
|
||||
|
||||
var cblas128 blas.Complex128 = gonum.Implementation{}
|
||||
|
||||
// Use sets the BLAS complex128 implementation to be used by subsequent BLAS calls.
|
||||
// The default implementation is
|
||||
// gonum.org/v1/gonum/blas/gonum.Implementation.
|
||||
func Use(b blas.Complex128) {
|
||||
cblas128 = b
|
||||
}
|
||||
|
||||
// Implementation returns the current BLAS complex128 implementation.
|
||||
//
|
||||
// Implementation allows direct calls to the current the BLAS complex128 implementation
|
||||
// giving finer control of parameters.
|
||||
func Implementation() blas.Complex128 {
|
||||
return cblas128
|
||||
}
|
||||
|
||||
// Vector represents a vector with an associated element increment.
|
||||
type Vector struct {
|
||||
Inc int
|
||||
Data []complex128
|
||||
}
|
||||
|
||||
// General represents a matrix using the conventional storage scheme.
|
||||
type General struct {
|
||||
Rows, Cols int
|
||||
Stride int
|
||||
Data []complex128
|
||||
}
|
||||
|
||||
// Band represents a band matrix using the band storage scheme.
|
||||
type Band struct {
|
||||
Rows, Cols int
|
||||
KL, KU int
|
||||
Stride int
|
||||
Data []complex128
|
||||
}
|
||||
|
||||
// Triangular represents a triangular matrix using the conventional storage scheme.
|
||||
type Triangular struct {
|
||||
N int
|
||||
Stride int
|
||||
Data []complex128
|
||||
Uplo blas.Uplo
|
||||
Diag blas.Diag
|
||||
}
|
||||
|
||||
// TriangularBand represents a triangular matrix using the band storage scheme.
|
||||
type TriangularBand struct {
|
||||
N, K int
|
||||
Stride int
|
||||
Data []complex128
|
||||
Uplo blas.Uplo
|
||||
Diag blas.Diag
|
||||
}
|
||||
|
||||
// TriangularPacked represents a triangular matrix using the packed storage scheme.
|
||||
type TriangularPacked struct {
|
||||
N int
|
||||
Data []complex128
|
||||
Uplo blas.Uplo
|
||||
Diag blas.Diag
|
||||
}
|
||||
|
||||
// Symmetric represents a symmetric matrix using the conventional storage scheme.
|
||||
type Symmetric struct {
|
||||
N int
|
||||
Stride int
|
||||
Data []complex128
|
||||
Uplo blas.Uplo
|
||||
}
|
||||
|
||||
// SymmetricBand represents a symmetric matrix using the band storage scheme.
|
||||
type SymmetricBand struct {
|
||||
N, K int
|
||||
Stride int
|
||||
Data []complex128
|
||||
Uplo blas.Uplo
|
||||
}
|
||||
|
||||
// SymmetricPacked represents a symmetric matrix using the packed storage scheme.
|
||||
type SymmetricPacked struct {
|
||||
N int
|
||||
Data []complex128
|
||||
Uplo blas.Uplo
|
||||
}
|
||||
|
||||
// Hermitian represents an Hermitian matrix using the conventional storage scheme.
|
||||
type Hermitian Symmetric
|
||||
|
||||
// HermitianBand represents an Hermitian matrix using the band storage scheme.
|
||||
type HermitianBand SymmetricBand
|
||||
|
||||
// HermitianPacked represents an Hermitian matrix using the packed storage scheme.
|
||||
type HermitianPacked SymmetricPacked
|
||||
|
||||
// Level 1
|
||||
|
||||
const negInc = "cblas128: negative vector increment"
|
||||
|
||||
// Dotu computes the dot product of the two vectors without
|
||||
// complex conjugation:
|
||||
// x^T * y.
|
||||
func Dotu(n int, x, y Vector) complex128 {
|
||||
return cblas128.Zdotu(n, x.Data, x.Inc, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Dotc computes the dot product of the two vectors with
|
||||
// complex conjugation:
|
||||
// x^H * y.
|
||||
func Dotc(n int, x, y Vector) complex128 {
|
||||
return cblas128.Zdotc(n, x.Data, x.Inc, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Nrm2 computes the Euclidean norm of the vector x:
|
||||
// sqrt(\sum_i x[i] * x[i]).
|
||||
//
|
||||
// Nrm2 will panic if the vector increment is negative.
|
||||
func Nrm2(n int, x Vector) float64 {
|
||||
if x.Inc < 0 {
|
||||
panic(negInc)
|
||||
}
|
||||
return cblas128.Dznrm2(n, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Asum computes the sum of magnitudes of the real and imaginary parts of
|
||||
// elements of the vector x:
|
||||
// \sum_i (|Re x[i]| + |Im x[i]|).
|
||||
//
|
||||
// Asum will panic if the vector increment is negative.
|
||||
func Asum(n int, x Vector) float64 {
|
||||
if x.Inc < 0 {
|
||||
panic(negInc)
|
||||
}
|
||||
return cblas128.Dzasum(n, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Iamax returns the index of an element of x with the largest sum of
|
||||
// magnitudes of the real and imaginary parts (|Re x[i]|+|Im x[i]|).
|
||||
// If there are multiple such indices, the earliest is returned.
|
||||
//
|
||||
// Iamax returns -1 if n == 0.
|
||||
//
|
||||
// Iamax will panic if the vector increment is negative.
|
||||
func Iamax(n int, x Vector) int {
|
||||
if x.Inc < 0 {
|
||||
panic(negInc)
|
||||
}
|
||||
return cblas128.Izamax(n, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Swap exchanges the elements of two vectors:
|
||||
// x[i], y[i] = y[i], x[i] for all i.
|
||||
func Swap(n int, x, y Vector) {
|
||||
cblas128.Zswap(n, x.Data, x.Inc, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Copy copies the elements of x into the elements of y:
|
||||
// y[i] = x[i] for all i.
|
||||
func Copy(n int, x, y Vector) {
|
||||
cblas128.Zcopy(n, x.Data, x.Inc, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Axpy computes
|
||||
// y = alpha * x + y,
|
||||
// where x and y are vectors, and alpha is a scalar.
|
||||
func Axpy(n int, alpha complex128, x, y Vector) {
|
||||
cblas128.Zaxpy(n, alpha, x.Data, x.Inc, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Scal computes
|
||||
// x = alpha * x,
|
||||
// where x is a vector, and alpha is a scalar.
|
||||
//
|
||||
// Scal will panic if the vector increment is negative.
|
||||
func Scal(n int, alpha complex128, x Vector) {
|
||||
if x.Inc < 0 {
|
||||
panic(negInc)
|
||||
}
|
||||
cblas128.Zscal(n, alpha, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Dscal computes
|
||||
// x = alpha * x,
|
||||
// where x is a vector, and alpha is a real scalar.
|
||||
//
|
||||
// Dscal will panic if the vector increment is negative.
|
||||
func Dscal(n int, alpha float64, x Vector) {
|
||||
if x.Inc < 0 {
|
||||
panic(negInc)
|
||||
}
|
||||
cblas128.Zdscal(n, alpha, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Level 2
|
||||
|
||||
// Gemv computes
|
||||
// y = alpha * A * x + beta * y, if t == blas.NoTrans,
|
||||
// y = alpha * A^T * x + beta * y, if t == blas.Trans,
|
||||
// y = alpha * A^H * x + beta * y, if t == blas.ConjTrans,
|
||||
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are
|
||||
// scalars.
|
||||
func Gemv(t blas.Transpose, alpha complex128, a General, x Vector, beta complex128, y Vector) {
|
||||
cblas128.Zgemv(t, a.Rows, a.Cols, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Gbmv computes
|
||||
// y = alpha * A * x + beta * y, if t == blas.NoTrans,
|
||||
// y = alpha * A^T * x + beta * y, if t == blas.Trans,
|
||||
// y = alpha * A^H * x + beta * y, if t == blas.ConjTrans,
|
||||
// where A is an m×n band matrix, x and y are vectors, and alpha and beta are
|
||||
// scalars.
|
||||
func Gbmv(t blas.Transpose, alpha complex128, a Band, x Vector, beta complex128, y Vector) {
|
||||
cblas128.Zgbmv(t, a.Rows, a.Cols, a.KL, a.KU, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Trmv computes
|
||||
// x = A * x, if t == blas.NoTrans,
|
||||
// x = A^T * x, if t == blas.Trans,
|
||||
// x = A^H * x, if t == blas.ConjTrans,
|
||||
// where A is an n×n triangular matrix, and x is a vector.
|
||||
func Trmv(t blas.Transpose, a Triangular, x Vector) {
|
||||
cblas128.Ztrmv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Tbmv computes
|
||||
// x = A * x, if t == blas.NoTrans,
|
||||
// x = A^T * x, if t == blas.Trans,
|
||||
// x = A^H * x, if t == blas.ConjTrans,
|
||||
// where A is an n×n triangular band matrix, and x is a vector.
|
||||
func Tbmv(t blas.Transpose, a TriangularBand, x Vector) {
|
||||
cblas128.Ztbmv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Tpmv computes
|
||||
// x = A * x, if t == blas.NoTrans,
|
||||
// x = A^T * x, if t == blas.Trans,
|
||||
// x = A^H * x, if t == blas.ConjTrans,
|
||||
// where A is an n×n triangular matrix in packed format, and x is a vector.
|
||||
func Tpmv(t blas.Transpose, a TriangularPacked, x Vector) {
|
||||
cblas128.Ztpmv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Trsv solves
|
||||
// A * x = b, if t == blas.NoTrans,
|
||||
// A^T * x = b, if t == blas.Trans,
|
||||
// A^H * x = b, if t == blas.ConjTrans,
|
||||
// where A is an n×n triangular matrix and x is a vector.
|
||||
//
|
||||
// At entry to the function, x contains the values of b, and the result is
|
||||
// stored in-place into x.
|
||||
//
|
||||
// No test for singularity or near-singularity is included in this
|
||||
// routine. Such tests must be performed before calling this routine.
|
||||
func Trsv(t blas.Transpose, a Triangular, x Vector) {
|
||||
cblas128.Ztrsv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Tbsv solves
|
||||
// A * x = b, if t == blas.NoTrans,
|
||||
// A^T * x = b, if t == blas.Trans,
|
||||
// A^H * x = b, if t == blas.ConjTrans,
|
||||
// where A is an n×n triangular band matrix, and x is a vector.
|
||||
//
|
||||
// At entry to the function, x contains the values of b, and the result is
|
||||
// stored in-place into x.
|
||||
//
|
||||
// No test for singularity or near-singularity is included in this
|
||||
// routine. Such tests must be performed before calling this routine.
|
||||
func Tbsv(t blas.Transpose, a TriangularBand, x Vector) {
|
||||
cblas128.Ztbsv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Tpsv solves
|
||||
// A * x = b, if t == blas.NoTrans,
|
||||
// A^T * x = b, if t == blas.Trans,
|
||||
// A^H * x = b, if t == blas.ConjTrans,
|
||||
// where A is an n×n triangular matrix in packed format and x is a vector.
|
||||
//
|
||||
// At entry to the function, x contains the values of b, and the result is
|
||||
// stored in-place into x.
|
||||
//
|
||||
// No test for singularity or near-singularity is included in this
|
||||
// routine. Such tests must be performed before calling this routine.
|
||||
func Tpsv(t blas.Transpose, a TriangularPacked, x Vector) {
|
||||
cblas128.Ztpsv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
|
||||
}
|
||||
|
||||
// Hemv computes
|
||||
// y = alpha * A * x + beta * y,
|
||||
// where A is an n×n Hermitian matrix, x and y are vectors, and alpha and
|
||||
// beta are scalars.
|
||||
func Hemv(alpha complex128, a Hermitian, x Vector, beta complex128, y Vector) {
|
||||
cblas128.Zhemv(a.Uplo, a.N, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Hbmv performs
|
||||
// y = alpha * A * x + beta * y,
|
||||
// where A is an n×n Hermitian band matrix, x and y are vectors, and alpha
|
||||
// and beta are scalars.
|
||||
func Hbmv(alpha complex128, a HermitianBand, x Vector, beta complex128, y Vector) {
|
||||
cblas128.Zhbmv(a.Uplo, a.N, a.K, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Hpmv performs
|
||||
// y = alpha * A * x + beta * y,
|
||||
// where A is an n×n Hermitian matrix in packed format, x and y are vectors,
|
||||
// and alpha and beta are scalars.
|
||||
func Hpmv(alpha complex128, a HermitianPacked, x Vector, beta complex128, y Vector) {
|
||||
cblas128.Zhpmv(a.Uplo, a.N, alpha, a.Data, x.Data, x.Inc, beta, y.Data, y.Inc)
|
||||
}
|
||||
|
||||
// Geru performs a rank-1 update
|
||||
// A += alpha * x * y^T,
|
||||
// where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
|
||||
func Geru(alpha complex128, x, y Vector, a General) {
|
||||
cblas128.Zgeru(a.Rows, a.Cols, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
|
||||
}
|
||||
|
||||
// Gerc performs a rank-1 update
|
||||
// A += alpha * x * y^H,
|
||||
// where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
|
||||
func Gerc(alpha complex128, x, y Vector, a General) {
|
||||
cblas128.Zgerc(a.Rows, a.Cols, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
|
||||
}
|
||||
|
||||
// Her performs a rank-1 update
|
||||
// A += alpha * x * y^T,
|
||||
// where A is an m×n Hermitian matrix, x and y are vectors, and alpha is a scalar.
|
||||
func Her(alpha float64, x Vector, a Hermitian) {
|
||||
cblas128.Zher(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data, a.Stride)
|
||||
}
|
||||
|
||||
// Hpr performs a rank-1 update
|
||||
// A += alpha * x * x^H,
|
||||
// where A is an n×n Hermitian matrix in packed format, x is a vector, and
|
||||
// alpha is a scalar.
|
||||
func Hpr(alpha float64, x Vector, a HermitianPacked) {
|
||||
cblas128.Zhpr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data)
|
||||
}
|
||||
|
||||
// Her2 performs a rank-2 update
|
||||
// A += alpha * x * y^H + conj(alpha) * y * x^H,
|
||||
// where A is an n×n Hermitian matrix, x and y are vectors, and alpha is a scalar.
|
||||
func Her2(alpha complex128, x, y Vector, a Hermitian) {
|
||||
cblas128.Zher2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
|
||||
}
|
||||
|
||||
// Hpr2 performs a rank-2 update
|
||||
// A += alpha * x * y^H + conj(alpha) * y * x^H,
|
||||
// where A is an n×n Hermitian matrix in packed format, x and y are vectors,
|
||||
// and alpha is a scalar.
|
||||
func Hpr2(alpha complex128, x, y Vector, a HermitianPacked) {
|
||||
cblas128.Zhpr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data)
|
||||
}
|
||||
|
||||
// Level 3
|
||||
|
||||
// Gemm computes
|
||||
// C = alpha * A * B + beta * C,
|
||||
// where A, B, and C are dense matrices, and alpha and beta are scalars.
|
||||
// tA and tB specify whether A or B are transposed or conjugated.
|
||||
func Gemm(tA, tB blas.Transpose, alpha complex128, a, b General, beta complex128, c General) {
|
||||
var m, n, k int
|
||||
if tA == blas.NoTrans {
|
||||
m, k = a.Rows, a.Cols
|
||||
} else {
|
||||
m, k = a.Cols, a.Rows
|
||||
}
|
||||
if tB == blas.NoTrans {
|
||||
n = b.Cols
|
||||
} else {
|
||||
n = b.Rows
|
||||
}
|
||||
cblas128.Zgemm(tA, tB, m, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
|
||||
}
|
||||
|
||||
// Symm performs
|
||||
// C = alpha * A * B + beta * C, if s == blas.Left,
|
||||
// C = alpha * B * A + beta * C, if s == blas.Right,
|
||||
// where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and
|
||||
// alpha and beta are scalars.
|
||||
func Symm(s blas.Side, alpha complex128, a Symmetric, b General, beta complex128, c General) {
|
||||
var m, n int
|
||||
if s == blas.Left {
|
||||
m, n = a.N, b.Cols
|
||||
} else {
|
||||
m, n = b.Rows, a.N
|
||||
}
|
||||
cblas128.Zsymm(s, a.Uplo, m, n, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
|
||||
}
|
||||
|
||||
// Syrk performs a symmetric rank-k update
|
||||
// C = alpha * A * A^T + beta * C, if t == blas.NoTrans,
|
||||
// C = alpha * A^T * A + beta * C, if t == blas.Trans,
|
||||
// where C is an n×n symmetric matrix, A is an n×k matrix if t == blas.NoTrans
|
||||
// and a k×n matrix otherwise, and alpha and beta are scalars.
|
||||
func Syrk(t blas.Transpose, alpha complex128, a General, beta complex128, c Symmetric) {
|
||||
var n, k int
|
||||
if t == blas.NoTrans {
|
||||
n, k = a.Rows, a.Cols
|
||||
} else {
|
||||
n, k = a.Cols, a.Rows
|
||||
}
|
||||
cblas128.Zsyrk(c.Uplo, t, n, k, alpha, a.Data, a.Stride, beta, c.Data, c.Stride)
|
||||
}
|
||||
|
||||
// Syr2k performs a symmetric rank-2k update
|
||||
// C = alpha * A * B^T + alpha * B * A^T + beta * C, if t == blas.NoTrans,
|
||||
// C = alpha * A^T * B + alpha * B^T * A + beta * C, if t == blas.Trans,
|
||||
// where C is an n×n symmetric matrix, A and B are n×k matrices if
|
||||
// t == blas.NoTrans and k×n otherwise, and alpha and beta are scalars.
|
||||
func Syr2k(t blas.Transpose, alpha complex128, a, b General, beta complex128, c Symmetric) {
|
||||
var n, k int
|
||||
if t == blas.NoTrans {
|
||||
n, k = a.Rows, a.Cols
|
||||
} else {
|
||||
n, k = a.Cols, a.Rows
|
||||
}
|
||||
cblas128.Zsyr2k(c.Uplo, t, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
|
||||
}
|
||||
|
||||
// Trmm performs
|
||||
// B = alpha * A * B, if tA == blas.NoTrans and s == blas.Left,
|
||||
// B = alpha * A^T * B, if tA == blas.Trans and s == blas.Left,
|
||||
// B = alpha * A^H * B, if tA == blas.ConjTrans and s == blas.Left,
|
||||
// B = alpha * B * A, if tA == blas.NoTrans and s == blas.Right,
|
||||
// B = alpha * B * A^T, if tA == blas.Trans and s == blas.Right,
|
||||
// B = alpha * B * A^H, if tA == blas.ConjTrans and s == blas.Right,
|
||||
// where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is
|
||||
// a scalar.
|
||||
func Trmm(s blas.Side, tA blas.Transpose, alpha complex128, a Triangular, b General) {
|
||||
cblas128.Ztrmm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
|
||||
}
|
||||
|
||||
// Trsm solves
|
||||
// A * X = alpha * B, if tA == blas.NoTrans and s == blas.Left,
|
||||
// A^T * X = alpha * B, if tA == blas.Trans and s == blas.Left,
|
||||
// A^H * X = alpha * B, if tA == blas.ConjTrans and s == blas.Left,
|
||||
// X * A = alpha * B, if tA == blas.NoTrans and s == blas.Right,
|
||||
// X * A^T = alpha * B, if tA == blas.Trans and s == blas.Right,
|
||||
// X * A^H = alpha * B, if tA == blas.ConjTrans and s == blas.Right,
|
||||
// where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and
|
||||
// alpha is a scalar.
|
||||
//
|
||||
// At entry to the function, b contains the values of B, and the result is
|
||||
// stored in-place into b.
|
||||
//
|
||||
// No check is made that A is invertible.
|
||||
func Trsm(s blas.Side, tA blas.Transpose, alpha complex128, a Triangular, b General) {
|
||||
cblas128.Ztrsm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
|
||||
}
|
||||
|
||||
// Hemm performs
|
||||
// C = alpha * A * B + beta * C, if s == blas.Left,
|
||||
// C = alpha * B * A + beta * C, if s == blas.Right,
|
||||
// where A is an n×n or m×m Hermitian matrix, B and C are m×n matrices, and
|
||||
// alpha and beta are scalars.
|
||||
func Hemm(s blas.Side, alpha complex128, a Hermitian, b General, beta complex128, c General) {
|
||||
var m, n int
|
||||
if s == blas.Left {
|
||||
m, n = a.N, b.Cols
|
||||
} else {
|
||||
m, n = b.Rows, a.N
|
||||
}
|
||||
cblas128.Zhemm(s, a.Uplo, m, n, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
|
||||
}
|
||||
|
||||
// Herk performs the Hermitian rank-k update
|
||||
// C = alpha * A * A^H + beta*C, if t == blas.NoTrans,
|
||||
// C = alpha * A^H * A + beta*C, if t == blas.ConjTrans,
|
||||
// where C is an n×n Hermitian matrix, A is an n×k matrix if t == blas.NoTrans
|
||||
// and a k×n matrix otherwise, and alpha and beta are scalars.
|
||||
func Herk(t blas.Transpose, alpha float64, a General, beta float64, c Hermitian) {
|
||||
var n, k int
|
||||
if t == blas.NoTrans {
|
||||
n, k = a.Rows, a.Cols
|
||||
} else {
|
||||
n, k = a.Cols, a.Rows
|
||||
}
|
||||
cblas128.Zherk(c.Uplo, t, n, k, alpha, a.Data, a.Stride, beta, c.Data, c.Stride)
|
||||
}
|
||||
|
||||
// Her2k performs the Hermitian rank-2k update
|
||||
// C = alpha * A * B^H + conj(alpha) * B * A^H + beta * C, if t == blas.NoTrans,
|
||||
// C = alpha * A^H * B + conj(alpha) * B^H * A + beta * C, if t == blas.ConjTrans,
|
||||
// where C is an n×n Hermitian matrix, A and B are n×k matrices if t == NoTrans
|
||||
// and k×n matrices otherwise, and alpha and beta are scalars.
|
||||
func Her2k(t blas.Transpose, alpha complex128, a, b General, beta float64, c Hermitian) {
|
||||
var n, k int
|
||||
if t == blas.NoTrans {
|
||||
n, k = a.Rows, a.Cols
|
||||
} else {
|
||||
n, k = a.Cols, a.Rows
|
||||
}
|
||||
cblas128.Zher2k(c.Uplo, t, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
|
||||
}
|
279
vendor/gonum.org/v1/gonum/blas/cblas128/conv.go
generated
vendored
Normal file
279
vendor/gonum.org/v1/gonum/blas/cblas128/conv.go
generated
vendored
Normal file
@@ -0,0 +1,279 @@
|
||||
// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.
|
||||
|
||||
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package cblas128
|
||||
|
||||
import "gonum.org/v1/gonum/blas"
|
||||
|
||||
// GeneralCols represents a matrix using the conventional column-major storage scheme.
|
||||
type GeneralCols General
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions as a and have adequate backing
|
||||
// data storage.
|
||||
func (t GeneralCols) From(a General) {
|
||||
if t.Rows != a.Rows || t.Cols != a.Cols {
|
||||
panic("cblas128: mismatched dimension")
|
||||
}
|
||||
if len(t.Data) < (t.Cols-1)*t.Stride+t.Rows {
|
||||
panic("cblas128: short data slice")
|
||||
}
|
||||
for i := 0; i < a.Rows; i++ {
|
||||
for j, v := range a.Data[i*a.Stride : i*a.Stride+a.Cols] {
|
||||
t.Data[i+j*t.Stride] = v
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions as a and have adequate backing
|
||||
// data storage.
|
||||
func (t General) From(a GeneralCols) {
|
||||
if t.Rows != a.Rows || t.Cols != a.Cols {
|
||||
panic("cblas128: mismatched dimension")
|
||||
}
|
||||
if len(t.Data) < (t.Rows-1)*t.Stride+t.Cols {
|
||||
panic("cblas128: short data slice")
|
||||
}
|
||||
for j := 0; j < a.Cols; j++ {
|
||||
for i, v := range a.Data[j*a.Stride : j*a.Stride+a.Rows] {
|
||||
t.Data[i*t.Stride+j] = v
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TriangularCols represents a matrix using the conventional column-major storage scheme.
|
||||
type TriangularCols Triangular
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions, uplo and diag as a and have
|
||||
// adequate backing data storage.
|
||||
func (t TriangularCols) From(a Triangular) {
|
||||
if t.N != a.N {
|
||||
panic("cblas128: mismatched dimension")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("cblas128: mismatched BLAS uplo")
|
||||
}
|
||||
if t.Diag != a.Diag {
|
||||
panic("cblas128: mismatched BLAS diag")
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("cblas128: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := i; j < a.N; j++ {
|
||||
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
|
||||
}
|
||||
}
|
||||
case blas.Lower:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := 0; j <= i; j++ {
|
||||
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
|
||||
}
|
||||
}
|
||||
case blas.All:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := 0; j < a.N; j++ {
|
||||
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions, uplo and diag as a and have
|
||||
// adequate backing data storage.
|
||||
func (t Triangular) From(a TriangularCols) {
|
||||
if t.N != a.N {
|
||||
panic("cblas128: mismatched dimension")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("cblas128: mismatched BLAS uplo")
|
||||
}
|
||||
if t.Diag != a.Diag {
|
||||
panic("cblas128: mismatched BLAS diag")
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("cblas128: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := i; j < a.N; j++ {
|
||||
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
|
||||
}
|
||||
}
|
||||
case blas.Lower:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := 0; j <= i; j++ {
|
||||
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
|
||||
}
|
||||
}
|
||||
case blas.All:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := 0; j < a.N; j++ {
|
||||
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// BandCols represents a matrix using the band column-major storage scheme.
|
||||
type BandCols Band
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions and bandwidth as a and have
|
||||
// adequate backing data storage.
|
||||
func (t BandCols) From(a Band) {
|
||||
if t.Rows != a.Rows || t.Cols != a.Cols {
|
||||
panic("cblas128: mismatched dimension")
|
||||
}
|
||||
if t.KL != a.KL || t.KU != a.KU {
|
||||
panic("cblas128: mismatched bandwidth")
|
||||
}
|
||||
if a.Stride < a.KL+a.KU+1 {
|
||||
panic("cblas128: short stride for source")
|
||||
}
|
||||
if t.Stride < t.KL+t.KU+1 {
|
||||
panic("cblas128: short stride for destination")
|
||||
}
|
||||
for i := 0; i < a.Rows; i++ {
|
||||
for j := max(0, i-a.KL); j < min(i+a.KU+1, a.Cols); j++ {
|
||||
t.Data[i+t.KU-j+j*t.Stride] = a.Data[j+a.KL-i+i*a.Stride]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions and bandwidth as a and have
|
||||
// adequate backing data storage.
|
||||
func (t Band) From(a BandCols) {
|
||||
if t.Rows != a.Rows || t.Cols != a.Cols {
|
||||
panic("cblas128: mismatched dimension")
|
||||
}
|
||||
if t.KL != a.KL || t.KU != a.KU {
|
||||
panic("cblas128: mismatched bandwidth")
|
||||
}
|
||||
if a.Stride < a.KL+a.KU+1 {
|
||||
panic("cblas128: short stride for source")
|
||||
}
|
||||
if t.Stride < t.KL+t.KU+1 {
|
||||
panic("cblas128: short stride for destination")
|
||||
}
|
||||
for j := 0; j < a.Cols; j++ {
|
||||
for i := max(0, j-a.KU); i < min(j+a.KL+1, a.Rows); i++ {
|
||||
t.Data[j+a.KL-i+i*a.Stride] = a.Data[i+t.KU-j+j*t.Stride]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TriangularBandCols represents a symmetric matrix using the band column-major storage scheme.
|
||||
type TriangularBandCols TriangularBand
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions, bandwidth and uplo as a and
|
||||
// have adequate backing data storage.
|
||||
func (t TriangularBandCols) From(a TriangularBand) {
|
||||
if t.N != a.N {
|
||||
panic("cblas128: mismatched dimension")
|
||||
}
|
||||
if t.K != a.K {
|
||||
panic("cblas128: mismatched bandwidth")
|
||||
}
|
||||
if a.Stride < a.K+1 {
|
||||
panic("cblas128: short stride for source")
|
||||
}
|
||||
if t.Stride < t.K+1 {
|
||||
panic("cblas128: short stride for destination")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("cblas128: mismatched BLAS uplo")
|
||||
}
|
||||
if t.Diag != a.Diag {
|
||||
panic("cblas128: mismatched BLAS diag")
|
||||
}
|
||||
dst := BandCols{
|
||||
Rows: t.N, Cols: t.N,
|
||||
Stride: t.Stride,
|
||||
Data: t.Data,
|
||||
}
|
||||
src := Band{
|
||||
Rows: a.N, Cols: a.N,
|
||||
Stride: a.Stride,
|
||||
Data: a.Data,
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("cblas128: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
dst.KU = t.K
|
||||
src.KU = a.K
|
||||
case blas.Lower:
|
||||
dst.KL = t.K
|
||||
src.KL = a.K
|
||||
}
|
||||
dst.From(src)
|
||||
}
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions, bandwidth and uplo as a and
|
||||
// have adequate backing data storage.
|
||||
func (t TriangularBand) From(a TriangularBandCols) {
|
||||
if t.N != a.N {
|
||||
panic("cblas128: mismatched dimension")
|
||||
}
|
||||
if t.K != a.K {
|
||||
panic("cblas128: mismatched bandwidth")
|
||||
}
|
||||
if a.Stride < a.K+1 {
|
||||
panic("cblas128: short stride for source")
|
||||
}
|
||||
if t.Stride < t.K+1 {
|
||||
panic("cblas128: short stride for destination")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("cblas128: mismatched BLAS uplo")
|
||||
}
|
||||
if t.Diag != a.Diag {
|
||||
panic("cblas128: mismatched BLAS diag")
|
||||
}
|
||||
dst := Band{
|
||||
Rows: t.N, Cols: t.N,
|
||||
Stride: t.Stride,
|
||||
Data: t.Data,
|
||||
}
|
||||
src := BandCols{
|
||||
Rows: a.N, Cols: a.N,
|
||||
Stride: a.Stride,
|
||||
Data: a.Data,
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("cblas128: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
dst.KU = t.K
|
||||
src.KU = a.K
|
||||
case blas.Lower:
|
||||
dst.KL = t.K
|
||||
src.KL = a.K
|
||||
}
|
||||
dst.From(src)
|
||||
}
|
||||
|
||||
func min(a, b int) int {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
func max(a, b int) int {
|
||||
if a > b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
155
vendor/gonum.org/v1/gonum/blas/cblas128/conv_hermitian.go
generated
vendored
Normal file
155
vendor/gonum.org/v1/gonum/blas/cblas128/conv_hermitian.go
generated
vendored
Normal file
@@ -0,0 +1,155 @@
|
||||
// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.
|
||||
|
||||
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package cblas128
|
||||
|
||||
import "gonum.org/v1/gonum/blas"
|
||||
|
||||
// HermitianCols represents a matrix using the conventional column-major storage scheme.
|
||||
type HermitianCols Hermitian
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions and uplo as a and have adequate
|
||||
// backing data storage.
|
||||
func (t HermitianCols) From(a Hermitian) {
|
||||
if t.N != a.N {
|
||||
panic("cblas128: mismatched dimension")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("cblas128: mismatched BLAS uplo")
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("cblas128: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := i; j < a.N; j++ {
|
||||
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
|
||||
}
|
||||
}
|
||||
case blas.Lower:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := 0; j <= i; j++ {
|
||||
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions and uplo as a and have adequate
|
||||
// backing data storage.
|
||||
func (t Hermitian) From(a HermitianCols) {
|
||||
if t.N != a.N {
|
||||
panic("cblas128: mismatched dimension")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("cblas128: mismatched BLAS uplo")
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("cblas128: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := i; j < a.N; j++ {
|
||||
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
|
||||
}
|
||||
}
|
||||
case blas.Lower:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := 0; j <= i; j++ {
|
||||
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// HermitianBandCols represents an Hermitian matrix using the band column-major storage scheme.
|
||||
type HermitianBandCols HermitianBand
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions, bandwidth and uplo as a and
|
||||
// have adequate backing data storage.
|
||||
func (t HermitianBandCols) From(a HermitianBand) {
|
||||
if t.N != a.N {
|
||||
panic("cblas128: mismatched dimension")
|
||||
}
|
||||
if t.K != a.K {
|
||||
panic("cblas128: mismatched bandwidth")
|
||||
}
|
||||
if a.Stride < a.K+1 {
|
||||
panic("cblas128: short stride for source")
|
||||
}
|
||||
if t.Stride < t.K+1 {
|
||||
panic("cblas128: short stride for destination")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("cblas128: mismatched BLAS uplo")
|
||||
}
|
||||
dst := BandCols{
|
||||
Rows: t.N, Cols: t.N,
|
||||
Stride: t.Stride,
|
||||
Data: t.Data,
|
||||
}
|
||||
src := Band{
|
||||
Rows: a.N, Cols: a.N,
|
||||
Stride: a.Stride,
|
||||
Data: a.Data,
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("cblas128: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
dst.KU = t.K
|
||||
src.KU = a.K
|
||||
case blas.Lower:
|
||||
dst.KL = t.K
|
||||
src.KL = a.K
|
||||
}
|
||||
dst.From(src)
|
||||
}
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions, bandwidth and uplo as a and
|
||||
// have adequate backing data storage.
|
||||
func (t HermitianBand) From(a HermitianBandCols) {
|
||||
if t.N != a.N {
|
||||
panic("cblas128: mismatched dimension")
|
||||
}
|
||||
if t.K != a.K {
|
||||
panic("cblas128: mismatched bandwidth")
|
||||
}
|
||||
if a.Stride < a.K+1 {
|
||||
panic("cblas128: short stride for source")
|
||||
}
|
||||
if t.Stride < t.K+1 {
|
||||
panic("cblas128: short stride for destination")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("cblas128: mismatched BLAS uplo")
|
||||
}
|
||||
dst := Band{
|
||||
Rows: t.N, Cols: t.N,
|
||||
Stride: t.Stride,
|
||||
Data: t.Data,
|
||||
}
|
||||
src := BandCols{
|
||||
Rows: a.N, Cols: a.N,
|
||||
Stride: a.Stride,
|
||||
Data: a.Data,
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("cblas128: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
dst.KU = t.K
|
||||
src.KU = a.K
|
||||
case blas.Lower:
|
||||
dst.KL = t.K
|
||||
src.KL = a.K
|
||||
}
|
||||
dst.From(src)
|
||||
}
|
155
vendor/gonum.org/v1/gonum/blas/cblas128/conv_symmetric.go
generated
vendored
Normal file
155
vendor/gonum.org/v1/gonum/blas/cblas128/conv_symmetric.go
generated
vendored
Normal file
@@ -0,0 +1,155 @@
|
||||
// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.
|
||||
|
||||
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package cblas128
|
||||
|
||||
import "gonum.org/v1/gonum/blas"
|
||||
|
||||
// SymmetricCols represents a matrix using the conventional column-major storage scheme.
|
||||
type SymmetricCols Symmetric
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions and uplo as a and have adequate
|
||||
// backing data storage.
|
||||
func (t SymmetricCols) From(a Symmetric) {
|
||||
if t.N != a.N {
|
||||
panic("cblas128: mismatched dimension")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("cblas128: mismatched BLAS uplo")
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("cblas128: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := i; j < a.N; j++ {
|
||||
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
|
||||
}
|
||||
}
|
||||
case blas.Lower:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := 0; j <= i; j++ {
|
||||
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions and uplo as a and have adequate
|
||||
// backing data storage.
|
||||
func (t Symmetric) From(a SymmetricCols) {
|
||||
if t.N != a.N {
|
||||
panic("cblas128: mismatched dimension")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("cblas128: mismatched BLAS uplo")
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("cblas128: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := i; j < a.N; j++ {
|
||||
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
|
||||
}
|
||||
}
|
||||
case blas.Lower:
|
||||
for i := 0; i < a.N; i++ {
|
||||
for j := 0; j <= i; j++ {
|
||||
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// SymmetricBandCols represents a symmetric matrix using the band column-major storage scheme.
|
||||
type SymmetricBandCols SymmetricBand
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions, bandwidth and uplo as a and
|
||||
// have adequate backing data storage.
|
||||
func (t SymmetricBandCols) From(a SymmetricBand) {
|
||||
if t.N != a.N {
|
||||
panic("cblas128: mismatched dimension")
|
||||
}
|
||||
if t.K != a.K {
|
||||
panic("cblas128: mismatched bandwidth")
|
||||
}
|
||||
if a.Stride < a.K+1 {
|
||||
panic("cblas128: short stride for source")
|
||||
}
|
||||
if t.Stride < t.K+1 {
|
||||
panic("cblas128: short stride for destination")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("cblas128: mismatched BLAS uplo")
|
||||
}
|
||||
dst := BandCols{
|
||||
Rows: t.N, Cols: t.N,
|
||||
Stride: t.Stride,
|
||||
Data: t.Data,
|
||||
}
|
||||
src := Band{
|
||||
Rows: a.N, Cols: a.N,
|
||||
Stride: a.Stride,
|
||||
Data: a.Data,
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("cblas128: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
dst.KU = t.K
|
||||
src.KU = a.K
|
||||
case blas.Lower:
|
||||
dst.KL = t.K
|
||||
src.KL = a.K
|
||||
}
|
||||
dst.From(src)
|
||||
}
|
||||
|
||||
// From fills the receiver with elements from a. The receiver
|
||||
// must have the same dimensions, bandwidth and uplo as a and
|
||||
// have adequate backing data storage.
|
||||
func (t SymmetricBand) From(a SymmetricBandCols) {
|
||||
if t.N != a.N {
|
||||
panic("cblas128: mismatched dimension")
|
||||
}
|
||||
if t.K != a.K {
|
||||
panic("cblas128: mismatched bandwidth")
|
||||
}
|
||||
if a.Stride < a.K+1 {
|
||||
panic("cblas128: short stride for source")
|
||||
}
|
||||
if t.Stride < t.K+1 {
|
||||
panic("cblas128: short stride for destination")
|
||||
}
|
||||
if t.Uplo != a.Uplo {
|
||||
panic("cblas128: mismatched BLAS uplo")
|
||||
}
|
||||
dst := Band{
|
||||
Rows: t.N, Cols: t.N,
|
||||
Stride: t.Stride,
|
||||
Data: t.Data,
|
||||
}
|
||||
src := BandCols{
|
||||
Rows: a.N, Cols: a.N,
|
||||
Stride: a.Stride,
|
||||
Data: a.Data,
|
||||
}
|
||||
switch a.Uplo {
|
||||
default:
|
||||
panic("cblas128: bad BLAS uplo")
|
||||
case blas.Upper:
|
||||
dst.KU = t.K
|
||||
src.KU = a.K
|
||||
case blas.Lower:
|
||||
dst.KL = t.K
|
||||
src.KL = a.K
|
||||
}
|
||||
dst.From(src)
|
||||
}
|
6
vendor/gonum.org/v1/gonum/blas/cblas128/doc.go
generated
vendored
Normal file
6
vendor/gonum.org/v1/gonum/blas/cblas128/doc.go
generated
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
// Copyright ©2017 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package cblas128 provides a simple interface to the complex128 BLAS API.
|
||||
package cblas128 // import "gonum.org/v1/gonum/blas/cblas128"
|
159
vendor/gonum.org/v1/gonum/blas/conversions.bash
generated
vendored
Normal file
159
vendor/gonum.org/v1/gonum/blas/conversions.bash
generated
vendored
Normal file
@@ -0,0 +1,159 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Copyright ©2017 The Gonum Authors. All rights reserved.
|
||||
# Use of this source code is governed by a BSD-style
|
||||
# license that can be found in the LICENSE file.
|
||||
|
||||
# Generate code for blas32.
|
||||
echo Generating blas32/conv.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > blas32/conv.go
|
||||
cat blas64/conv.go \
|
||||
| gofmt -r 'float64 -> float32' \
|
||||
\
|
||||
| sed -e 's/blas64/blas32/' \
|
||||
\
|
||||
>> blas32/conv.go
|
||||
|
||||
echo Generating blas32/conv_test.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > blas32/conv_test.go
|
||||
cat blas64/conv_test.go \
|
||||
| gofmt -r 'float64 -> float32' \
|
||||
\
|
||||
| sed -e 's/blas64/blas32/' \
|
||||
-e 's_"math"_math "gonum.org/v1/gonum/internal/math32"_' \
|
||||
\
|
||||
>> blas32/conv_test.go
|
||||
|
||||
echo Generating blas32/conv_symmetric.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > blas32/conv_symmetric.go
|
||||
cat blas64/conv_symmetric.go \
|
||||
| gofmt -r 'float64 -> float32' \
|
||||
\
|
||||
| sed -e 's/blas64/blas32/' \
|
||||
\
|
||||
>> blas32/conv_symmetric.go
|
||||
|
||||
echo Generating blas32/conv_symmetric_test.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > blas32/conv_symmetric_test.go
|
||||
cat blas64/conv_symmetric_test.go \
|
||||
| gofmt -r 'float64 -> float32' \
|
||||
\
|
||||
| sed -e 's/blas64/blas32/' \
|
||||
-e 's_"math"_math "gonum.org/v1/gonum/internal/math32"_' \
|
||||
\
|
||||
>> blas32/conv_symmetric_test.go
|
||||
|
||||
|
||||
# Generate code for cblas128.
|
||||
echo Generating cblas128/conv.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas128/conv.go
|
||||
cat blas64/conv.go \
|
||||
| gofmt -r 'float64 -> complex128' \
|
||||
\
|
||||
| sed -e 's/blas64/cblas128/' \
|
||||
\
|
||||
>> cblas128/conv.go
|
||||
|
||||
echo Generating cblas128/conv_test.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas128/conv_test.go
|
||||
cat blas64/conv_test.go \
|
||||
| gofmt -r 'float64 -> complex128' \
|
||||
\
|
||||
| sed -e 's/blas64/cblas128/' \
|
||||
-e 's_"math"_math "math/cmplx"_' \
|
||||
\
|
||||
>> cblas128/conv_test.go
|
||||
|
||||
echo Generating cblas128/conv_symmetric.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas128/conv_symmetric.go
|
||||
cat blas64/conv_symmetric.go \
|
||||
| gofmt -r 'float64 -> complex128' \
|
||||
\
|
||||
| sed -e 's/blas64/cblas128/' \
|
||||
\
|
||||
>> cblas128/conv_symmetric.go
|
||||
|
||||
echo Generating cblas128/conv_symmetric_test.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas128/conv_symmetric_test.go
|
||||
cat blas64/conv_symmetric_test.go \
|
||||
| gofmt -r 'float64 -> complex128' \
|
||||
\
|
||||
| sed -e 's/blas64/cblas128/' \
|
||||
-e 's_"math"_math "math/cmplx"_' \
|
||||
\
|
||||
>> cblas128/conv_symmetric_test.go
|
||||
|
||||
echo Generating cblas128/conv_hermitian.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas128/conv_hermitian.go
|
||||
cat blas64/conv_symmetric.go \
|
||||
| gofmt -r 'float64 -> complex128' \
|
||||
\
|
||||
| sed -e 's/blas64/cblas128/' \
|
||||
-e 's/Symmetric/Hermitian/g' \
|
||||
-e 's/a symmetric/an Hermitian/g' \
|
||||
-e 's/symmetric/hermitian/g' \
|
||||
-e 's/Sym/Herm/g' \
|
||||
\
|
||||
>> cblas128/conv_hermitian.go
|
||||
|
||||
echo Generating cblas128/conv_hermitian_test.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas128/conv_hermitian_test.go
|
||||
cat blas64/conv_symmetric_test.go \
|
||||
| gofmt -r 'float64 -> complex128' \
|
||||
\
|
||||
| sed -e 's/blas64/cblas128/' \
|
||||
-e 's/Symmetric/Hermitian/g' \
|
||||
-e 's/a symmetric/an Hermitian/g' \
|
||||
-e 's/symmetric/hermitian/g' \
|
||||
-e 's/Sym/Herm/g' \
|
||||
-e 's_"math"_math "math/cmplx"_' \
|
||||
\
|
||||
>> cblas128/conv_hermitian_test.go
|
||||
|
||||
|
||||
# Generate code for cblas64.
|
||||
echo Generating cblas64/conv.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas64/conv.go
|
||||
cat blas64/conv.go \
|
||||
| gofmt -r 'float64 -> complex64' \
|
||||
\
|
||||
| sed -e 's/blas64/cblas64/' \
|
||||
\
|
||||
>> cblas64/conv.go
|
||||
|
||||
echo Generating cblas64/conv_test.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas64/conv_test.go
|
||||
cat blas64/conv_test.go \
|
||||
| gofmt -r 'float64 -> complex64' \
|
||||
\
|
||||
| sed -e 's/blas64/cblas64/' \
|
||||
-e 's_"math"_math "gonum.org/v1/gonum/internal/cmplx64"_' \
|
||||
\
|
||||
>> cblas64/conv_test.go
|
||||
|
||||
echo Generating cblas64/conv_hermitian.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas64/conv_hermitian.go
|
||||
cat blas64/conv_symmetric.go \
|
||||
| gofmt -r 'float64 -> complex64' \
|
||||
\
|
||||
| sed -e 's/blas64/cblas64/' \
|
||||
-e 's/Symmetric/Hermitian/g' \
|
||||
-e 's/a symmetric/an Hermitian/g' \
|
||||
-e 's/symmetric/hermitian/g' \
|
||||
-e 's/Sym/Herm/g' \
|
||||
\
|
||||
>> cblas64/conv_hermitian.go
|
||||
|
||||
echo Generating cblas64/conv_hermitian_test.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas64/conv_hermitian_test.go
|
||||
cat blas64/conv_symmetric_test.go \
|
||||
| gofmt -r 'float64 -> complex64' \
|
||||
\
|
||||
| sed -e 's/blas64/cblas64/' \
|
||||
-e 's/Symmetric/Hermitian/g' \
|
||||
-e 's/a symmetric/an Hermitian/g' \
|
||||
-e 's/symmetric/hermitian/g' \
|
||||
-e 's/Sym/Herm/g' \
|
||||
-e 's_"math"_math "gonum.org/v1/gonum/internal/cmplx64"_' \
|
||||
\
|
||||
>> cblas64/conv_hermitian_test.go
|
108
vendor/gonum.org/v1/gonum/blas/doc.go
generated
vendored
Normal file
108
vendor/gonum.org/v1/gonum/blas/doc.go
generated
vendored
Normal file
@@ -0,0 +1,108 @@
|
||||
// Copyright ©2017 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
/*
|
||||
Package blas provides interfaces for the BLAS linear algebra standard.
|
||||
|
||||
All methods must perform appropriate parameter checking and panic if
|
||||
provided parameters that do not conform to the requirements specified
|
||||
by the BLAS standard.
|
||||
|
||||
Quick Reference Guide to the BLAS from http://www.netlib.org/lapack/lug/node145.html
|
||||
|
||||
This version is modified to remove the "order" option. All matrix operations are
|
||||
on row-order matrices.
|
||||
|
||||
Level 1 BLAS
|
||||
|
||||
dim scalar vector vector scalars 5-element prefixes
|
||||
struct
|
||||
|
||||
_rotg ( a, b ) S, D
|
||||
_rotmg( d1, d2, a, b ) S, D
|
||||
_rot ( n, x, incX, y, incY, c, s ) S, D
|
||||
_rotm ( n, x, incX, y, incY, param ) S, D
|
||||
_swap ( n, x, incX, y, incY ) S, D, C, Z
|
||||
_scal ( n, alpha, x, incX ) S, D, C, Z, Cs, Zd
|
||||
_copy ( n, x, incX, y, incY ) S, D, C, Z
|
||||
_axpy ( n, alpha, x, incX, y, incY ) S, D, C, Z
|
||||
_dot ( n, x, incX, y, incY ) S, D, Ds
|
||||
_dotu ( n, x, incX, y, incY ) C, Z
|
||||
_dotc ( n, x, incX, y, incY ) C, Z
|
||||
__dot ( n, alpha, x, incX, y, incY ) Sds
|
||||
_nrm2 ( n, x, incX ) S, D, Sc, Dz
|
||||
_asum ( n, x, incX ) S, D, Sc, Dz
|
||||
I_amax( n, x, incX ) s, d, c, z
|
||||
|
||||
Level 2 BLAS
|
||||
|
||||
options dim b-width scalar matrix vector scalar vector prefixes
|
||||
|
||||
_gemv ( trans, m, n, alpha, a, lda, x, incX, beta, y, incY ) S, D, C, Z
|
||||
_gbmv ( trans, m, n, kL, kU, alpha, a, lda, x, incX, beta, y, incY ) S, D, C, Z
|
||||
_hemv ( uplo, n, alpha, a, lda, x, incX, beta, y, incY ) C, Z
|
||||
_hbmv ( uplo, n, k, alpha, a, lda, x, incX, beta, y, incY ) C, Z
|
||||
_hpmv ( uplo, n, alpha, ap, x, incX, beta, y, incY ) C, Z
|
||||
_symv ( uplo, n, alpha, a, lda, x, incX, beta, y, incY ) S, D
|
||||
_sbmv ( uplo, n, k, alpha, a, lda, x, incX, beta, y, incY ) S, D
|
||||
_spmv ( uplo, n, alpha, ap, x, incX, beta, y, incY ) S, D
|
||||
_trmv ( uplo, trans, diag, n, a, lda, x, incX ) S, D, C, Z
|
||||
_tbmv ( uplo, trans, diag, n, k, a, lda, x, incX ) S, D, C, Z
|
||||
_tpmv ( uplo, trans, diag, n, ap, x, incX ) S, D, C, Z
|
||||
_trsv ( uplo, trans, diag, n, a, lda, x, incX ) S, D, C, Z
|
||||
_tbsv ( uplo, trans, diag, n, k, a, lda, x, incX ) S, D, C, Z
|
||||
_tpsv ( uplo, trans, diag, n, ap, x, incX ) S, D, C, Z
|
||||
|
||||
options dim scalar vector vector matrix prefixes
|
||||
|
||||
_ger ( m, n, alpha, x, incX, y, incY, a, lda ) S, D
|
||||
_geru ( m, n, alpha, x, incX, y, incY, a, lda ) C, Z
|
||||
_gerc ( m, n, alpha, x, incX, y, incY, a, lda ) C, Z
|
||||
_her ( uplo, n, alpha, x, incX, a, lda ) C, Z
|
||||
_hpr ( uplo, n, alpha, x, incX, ap ) C, Z
|
||||
_her2 ( uplo, n, alpha, x, incX, y, incY, a, lda ) C, Z
|
||||
_hpr2 ( uplo, n, alpha, x, incX, y, incY, ap ) C, Z
|
||||
_syr ( uplo, n, alpha, x, incX, a, lda ) S, D
|
||||
_spr ( uplo, n, alpha, x, incX, ap ) S, D
|
||||
_syr2 ( uplo, n, alpha, x, incX, y, incY, a, lda ) S, D
|
||||
_spr2 ( uplo, n, alpha, x, incX, y, incY, ap ) S, D
|
||||
|
||||
Level 3 BLAS
|
||||
|
||||
options dim scalar matrix matrix scalar matrix prefixes
|
||||
|
||||
_gemm ( transA, transB, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc ) S, D, C, Z
|
||||
_symm ( side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc ) S, D, C, Z
|
||||
_hemm ( side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc ) C, Z
|
||||
_syrk ( uplo, trans, n, k, alpha, a, lda, beta, c, ldc ) S, D, C, Z
|
||||
_herk ( uplo, trans, n, k, alpha, a, lda, beta, c, ldc ) C, Z
|
||||
_syr2k( uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc ) S, D, C, Z
|
||||
_her2k( uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc ) C, Z
|
||||
_trmm ( side, uplo, transA, diag, m, n, alpha, a, lda, b, ldb ) S, D, C, Z
|
||||
_trsm ( side, uplo, transA, diag, m, n, alpha, a, lda, b, ldb ) S, D, C, Z
|
||||
|
||||
Meaning of prefixes
|
||||
|
||||
S - float32 C - complex64
|
||||
D - float64 Z - complex128
|
||||
|
||||
Matrix types
|
||||
|
||||
GE - GEneral GB - General Band
|
||||
SY - SYmmetric SB - Symmetric Band SP - Symmetric Packed
|
||||
HE - HErmitian HB - Hermitian Band HP - Hermitian Packed
|
||||
TR - TRiangular TB - Triangular Band TP - Triangular Packed
|
||||
|
||||
Options
|
||||
|
||||
trans = NoTrans, Trans, ConjTrans
|
||||
uplo = Upper, Lower
|
||||
diag = Nonunit, Unit
|
||||
side = Left, Right (A or op(A) on the left, or A or op(A) on the right)
|
||||
|
||||
For real matrices, Trans and ConjTrans have the same meaning.
|
||||
For Hermitian matrices, trans = Trans is not allowed.
|
||||
For complex symmetric matrices, trans = ConjTrans is not allowed.
|
||||
*/
|
||||
package blas // import "gonum.org/v1/gonum/blas"
|
314
vendor/gonum.org/v1/gonum/blas/gonum/dgemm.go
generated
vendored
Normal file
314
vendor/gonum.org/v1/gonum/blas/gonum/dgemm.go
generated
vendored
Normal file
@@ -0,0 +1,314 @@
|
||||
// Copyright ©2014 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package gonum
|
||||
|
||||
import (
|
||||
"runtime"
|
||||
"sync"
|
||||
|
||||
"gonum.org/v1/gonum/blas"
|
||||
"gonum.org/v1/gonum/internal/asm/f64"
|
||||
)
|
||||
|
||||
// Dgemm performs one of the matrix-matrix operations
|
||||
// C = alpha * A * B + beta * C
|
||||
// C = alpha * A^T * B + beta * C
|
||||
// C = alpha * A * B^T + beta * C
|
||||
// C = alpha * A^T * B^T + beta * C
|
||||
// where A is an m×k or k×m dense matrix, B is an n×k or k×n dense matrix, C is
|
||||
// an m×n matrix, and alpha and beta are scalars. tA and tB specify whether A or
|
||||
// B are transposed.
|
||||
func (Implementation) Dgemm(tA, tB blas.Transpose, m, n, k int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int) {
|
||||
switch tA {
|
||||
default:
|
||||
panic(badTranspose)
|
||||
case blas.NoTrans, blas.Trans, blas.ConjTrans:
|
||||
}
|
||||
switch tB {
|
||||
default:
|
||||
panic(badTranspose)
|
||||
case blas.NoTrans, blas.Trans, blas.ConjTrans:
|
||||
}
|
||||
if m < 0 {
|
||||
panic(mLT0)
|
||||
}
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
if k < 0 {
|
||||
panic(kLT0)
|
||||
}
|
||||
aTrans := tA == blas.Trans || tA == blas.ConjTrans
|
||||
if aTrans {
|
||||
if lda < max(1, m) {
|
||||
panic(badLdA)
|
||||
}
|
||||
} else {
|
||||
if lda < max(1, k) {
|
||||
panic(badLdA)
|
||||
}
|
||||
}
|
||||
bTrans := tB == blas.Trans || tB == blas.ConjTrans
|
||||
if bTrans {
|
||||
if ldb < max(1, k) {
|
||||
panic(badLdB)
|
||||
}
|
||||
} else {
|
||||
if ldb < max(1, n) {
|
||||
panic(badLdB)
|
||||
}
|
||||
}
|
||||
if ldc < max(1, n) {
|
||||
panic(badLdC)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if m == 0 || n == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// For zero matrix size the following slice length checks are trivially satisfied.
|
||||
if aTrans {
|
||||
if len(a) < (k-1)*lda+m {
|
||||
panic(shortA)
|
||||
}
|
||||
} else {
|
||||
if len(a) < (m-1)*lda+k {
|
||||
panic(shortA)
|
||||
}
|
||||
}
|
||||
if bTrans {
|
||||
if len(b) < (n-1)*ldb+k {
|
||||
panic(shortB)
|
||||
}
|
||||
} else {
|
||||
if len(b) < (k-1)*ldb+n {
|
||||
panic(shortB)
|
||||
}
|
||||
}
|
||||
if len(c) < (m-1)*ldc+n {
|
||||
panic(shortC)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if (alpha == 0 || k == 0) && beta == 1 {
|
||||
return
|
||||
}
|
||||
|
||||
// scale c
|
||||
if beta != 1 {
|
||||
if beta == 0 {
|
||||
for i := 0; i < m; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for j := range ctmp {
|
||||
ctmp[j] = 0
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for i := 0; i < m; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
dgemmParallel(aTrans, bTrans, m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
}
|
||||
|
||||
func dgemmParallel(aTrans, bTrans bool, m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
|
||||
// dgemmParallel computes a parallel matrix multiplication by partitioning
|
||||
// a and b into sub-blocks, and updating c with the multiplication of the sub-block
|
||||
// In all cases,
|
||||
// A = [ A_11 A_12 ... A_1j
|
||||
// A_21 A_22 ... A_2j
|
||||
// ...
|
||||
// A_i1 A_i2 ... A_ij]
|
||||
//
|
||||
// and same for B. All of the submatrix sizes are blockSize×blockSize except
|
||||
// at the edges.
|
||||
//
|
||||
// In all cases, there is one dimension for each matrix along which
|
||||
// C must be updated sequentially.
|
||||
// Cij = \sum_k Aik Bki, (A * B)
|
||||
// Cij = \sum_k Aki Bkj, (A^T * B)
|
||||
// Cij = \sum_k Aik Bjk, (A * B^T)
|
||||
// Cij = \sum_k Aki Bjk, (A^T * B^T)
|
||||
//
|
||||
// This code computes one {i, j} block sequentially along the k dimension,
|
||||
// and computes all of the {i, j} blocks concurrently. This
|
||||
// partitioning allows Cij to be updated in-place without race-conditions.
|
||||
// Instead of launching a goroutine for each possible concurrent computation,
|
||||
// a number of worker goroutines are created and channels are used to pass
|
||||
// available and completed cases.
|
||||
//
|
||||
// http://alexkr.com/docs/matrixmult.pdf is a good reference on matrix-matrix
|
||||
// multiplies, though this code does not copy matrices to attempt to eliminate
|
||||
// cache misses.
|
||||
|
||||
maxKLen := k
|
||||
parBlocks := blocks(m, blockSize) * blocks(n, blockSize)
|
||||
if parBlocks < minParBlock {
|
||||
// The matrix multiplication is small in the dimensions where it can be
|
||||
// computed concurrently. Just do it in serial.
|
||||
dgemmSerial(aTrans, bTrans, m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
return
|
||||
}
|
||||
|
||||
nWorkers := runtime.GOMAXPROCS(0)
|
||||
if parBlocks < nWorkers {
|
||||
nWorkers = parBlocks
|
||||
}
|
||||
// There is a tradeoff between the workers having to wait for work
|
||||
// and a large buffer making operations slow.
|
||||
buf := buffMul * nWorkers
|
||||
if buf > parBlocks {
|
||||
buf = parBlocks
|
||||
}
|
||||
|
||||
sendChan := make(chan subMul, buf)
|
||||
|
||||
// Launch workers. A worker receives an {i, j} submatrix of c, and computes
|
||||
// A_ik B_ki (or the transposed version) storing the result in c_ij. When the
|
||||
// channel is finally closed, it signals to the waitgroup that it has finished
|
||||
// computing.
|
||||
var wg sync.WaitGroup
|
||||
for i := 0; i < nWorkers; i++ {
|
||||
wg.Add(1)
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
for sub := range sendChan {
|
||||
i := sub.i
|
||||
j := sub.j
|
||||
leni := blockSize
|
||||
if i+leni > m {
|
||||
leni = m - i
|
||||
}
|
||||
lenj := blockSize
|
||||
if j+lenj > n {
|
||||
lenj = n - j
|
||||
}
|
||||
|
||||
cSub := sliceView64(c, ldc, i, j, leni, lenj)
|
||||
|
||||
// Compute A_ik B_kj for all k
|
||||
for k := 0; k < maxKLen; k += blockSize {
|
||||
lenk := blockSize
|
||||
if k+lenk > maxKLen {
|
||||
lenk = maxKLen - k
|
||||
}
|
||||
var aSub, bSub []float64
|
||||
if aTrans {
|
||||
aSub = sliceView64(a, lda, k, i, lenk, leni)
|
||||
} else {
|
||||
aSub = sliceView64(a, lda, i, k, leni, lenk)
|
||||
}
|
||||
if bTrans {
|
||||
bSub = sliceView64(b, ldb, j, k, lenj, lenk)
|
||||
} else {
|
||||
bSub = sliceView64(b, ldb, k, j, lenk, lenj)
|
||||
}
|
||||
dgemmSerial(aTrans, bTrans, leni, lenj, lenk, aSub, lda, bSub, ldb, cSub, ldc, alpha)
|
||||
}
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
// Send out all of the {i, j} subblocks for computation.
|
||||
for i := 0; i < m; i += blockSize {
|
||||
for j := 0; j < n; j += blockSize {
|
||||
sendChan <- subMul{
|
||||
i: i,
|
||||
j: j,
|
||||
}
|
||||
}
|
||||
}
|
||||
close(sendChan)
|
||||
wg.Wait()
|
||||
}
|
||||
|
||||
// dgemmSerial is serial matrix multiply
|
||||
func dgemmSerial(aTrans, bTrans bool, m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
|
||||
switch {
|
||||
case !aTrans && !bTrans:
|
||||
dgemmSerialNotNot(m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
return
|
||||
case aTrans && !bTrans:
|
||||
dgemmSerialTransNot(m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
return
|
||||
case !aTrans && bTrans:
|
||||
dgemmSerialNotTrans(m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
return
|
||||
case aTrans && bTrans:
|
||||
dgemmSerialTransTrans(m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
return
|
||||
default:
|
||||
panic("unreachable")
|
||||
}
|
||||
}
|
||||
|
||||
// dgemmSerial where neither a nor b are transposed
|
||||
func dgemmSerialNotNot(m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
|
||||
// This style is used instead of the literal [i*stride +j]) is used because
|
||||
// approximately 5 times faster as of go 1.3.
|
||||
for i := 0; i < m; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for l, v := range a[i*lda : i*lda+k] {
|
||||
tmp := alpha * v
|
||||
if tmp != 0 {
|
||||
f64.AxpyUnitary(tmp, b[l*ldb:l*ldb+n], ctmp)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// dgemmSerial where neither a is transposed and b is not
|
||||
func dgemmSerialTransNot(m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
|
||||
// This style is used instead of the literal [i*stride +j]) is used because
|
||||
// approximately 5 times faster as of go 1.3.
|
||||
for l := 0; l < k; l++ {
|
||||
btmp := b[l*ldb : l*ldb+n]
|
||||
for i, v := range a[l*lda : l*lda+m] {
|
||||
tmp := alpha * v
|
||||
if tmp != 0 {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
f64.AxpyUnitary(tmp, btmp, ctmp)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// dgemmSerial where neither a is not transposed and b is
|
||||
func dgemmSerialNotTrans(m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
|
||||
// This style is used instead of the literal [i*stride +j]) is used because
|
||||
// approximately 5 times faster as of go 1.3.
|
||||
for i := 0; i < m; i++ {
|
||||
atmp := a[i*lda : i*lda+k]
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for j := 0; j < n; j++ {
|
||||
ctmp[j] += alpha * f64.DotUnitary(atmp, b[j*ldb:j*ldb+k])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// dgemmSerial where both are transposed
|
||||
func dgemmSerialTransTrans(m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
|
||||
// This style is used instead of the literal [i*stride +j]) is used because
|
||||
// approximately 5 times faster as of go 1.3.
|
||||
for l := 0; l < k; l++ {
|
||||
for i, v := range a[l*lda : l*lda+m] {
|
||||
tmp := alpha * v
|
||||
if tmp != 0 {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
f64.AxpyInc(tmp, b[l:], ctmp, uintptr(n), uintptr(ldb), 1, 0, 0)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func sliceView64(a []float64, lda, i, j, r, c int) []float64 {
|
||||
return a[i*lda+j : (i+r-1)*lda+j+c]
|
||||
}
|
88
vendor/gonum.org/v1/gonum/blas/gonum/doc.go
generated
vendored
Normal file
88
vendor/gonum.org/v1/gonum/blas/gonum/doc.go
generated
vendored
Normal file
@@ -0,0 +1,88 @@
|
||||
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Ensure changes made to blas/native are reflected in blas/cgo where relevant.
|
||||
|
||||
/*
|
||||
Package gonum is a Go implementation of the BLAS API. This implementation
|
||||
panics when the input arguments are invalid as per the standard, for example
|
||||
if a vector increment is zero. Note that the treatment of NaN values
|
||||
is not specified, and differs among the BLAS implementations.
|
||||
gonum.org/v1/gonum/blas/blas64 provides helpful wrapper functions to the BLAS
|
||||
interface. The rest of this text describes the layout of the data for the input types.
|
||||
|
||||
Note that in the function documentation, x[i] refers to the i^th element
|
||||
of the vector, which will be different from the i^th element of the slice if
|
||||
incX != 1.
|
||||
|
||||
See http://www.netlib.org/lapack/explore-html/d4/de1/_l_i_c_e_n_s_e_source.html
|
||||
for more license information.
|
||||
|
||||
Vector arguments are effectively strided slices. They have two input arguments,
|
||||
a number of elements, n, and an increment, incX. The increment specifies the
|
||||
distance between elements of the vector. The actual Go slice may be longer
|
||||
than necessary.
|
||||
The increment may be positive or negative, except in functions with only
|
||||
a single vector argument where the increment may only be positive. If the increment
|
||||
is negative, s[0] is the last element in the slice. Note that this is not the same
|
||||
as counting backward from the end of the slice, as len(s) may be longer than
|
||||
necessary. So, for example, if n = 5 and incX = 3, the elements of s are
|
||||
[0 * * 1 * * 2 * * 3 * * 4 * * * ...]
|
||||
where ∗ elements are never accessed. If incX = -3, the same elements are
|
||||
accessed, just in reverse order (4, 3, 2, 1, 0).
|
||||
|
||||
Dense matrices are specified by a number of rows, a number of columns, and a stride.
|
||||
The stride specifies the number of entries in the slice between the first element
|
||||
of successive rows. The stride must be at least as large as the number of columns
|
||||
but may be longer.
|
||||
[a00 ... a0n a0* ... a1stride-1 a21 ... amn am* ... amstride-1]
|
||||
Thus, dense[i*ld + j] refers to the {i, j}th element of the matrix.
|
||||
|
||||
Symmetric and triangular matrices (non-packed) are stored identically to Dense,
|
||||
except that only elements in one triangle of the matrix are accessed.
|
||||
|
||||
Packed symmetric and packed triangular matrices are laid out with the entries
|
||||
condensed such that all of the unreferenced elements are removed. So, the upper triangular
|
||||
matrix
|
||||
[
|
||||
1 2 3
|
||||
0 4 5
|
||||
0 0 6
|
||||
]
|
||||
and the lower-triangular matrix
|
||||
[
|
||||
1 0 0
|
||||
2 3 0
|
||||
4 5 6
|
||||
]
|
||||
will both be compacted as [1 2 3 4 5 6]. The (i, j) element of the original
|
||||
dense matrix can be found at element i*n - (i-1)*i/2 + j for upper triangular,
|
||||
and at element i * (i+1) /2 + j for lower triangular.
|
||||
|
||||
Banded matrices are laid out in a compact format, constructed by removing the
|
||||
zeros in the rows and aligning the diagonals. For example, the matrix
|
||||
[
|
||||
1 2 3 0 0 0
|
||||
4 5 6 7 0 0
|
||||
0 8 9 10 11 0
|
||||
0 0 12 13 14 15
|
||||
0 0 0 16 17 18
|
||||
0 0 0 0 19 20
|
||||
]
|
||||
|
||||
implicitly becomes (∗ entries are never accessed)
|
||||
[
|
||||
* 1 2 3
|
||||
4 5 6 7
|
||||
8 9 10 11
|
||||
12 13 14 15
|
||||
16 17 18 *
|
||||
19 20 * *
|
||||
]
|
||||
which is given to the BLAS routine as [∗ 1 2 3 4 ...].
|
||||
|
||||
See http://www.crest.iu.edu/research/mtl/reference/html/banded.html
|
||||
for more information
|
||||
*/
|
||||
package gonum // import "gonum.org/v1/gonum/blas/gonum"
|
35
vendor/gonum.org/v1/gonum/blas/gonum/errors.go
generated
vendored
Normal file
35
vendor/gonum.org/v1/gonum/blas/gonum/errors.go
generated
vendored
Normal file
@@ -0,0 +1,35 @@
|
||||
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package gonum
|
||||
|
||||
// Panic strings used during parameter checks.
|
||||
// This list is duplicated in netlib/blas/netlib. Keep in sync.
|
||||
const (
|
||||
zeroIncX = "blas: zero x index increment"
|
||||
zeroIncY = "blas: zero y index increment"
|
||||
|
||||
mLT0 = "blas: m < 0"
|
||||
nLT0 = "blas: n < 0"
|
||||
kLT0 = "blas: k < 0"
|
||||
kLLT0 = "blas: kL < 0"
|
||||
kULT0 = "blas: kU < 0"
|
||||
|
||||
badUplo = "blas: illegal triangle"
|
||||
badTranspose = "blas: illegal transpose"
|
||||
badDiag = "blas: illegal diagonal"
|
||||
badSide = "blas: illegal side"
|
||||
badFlag = "blas: illegal rotm flag"
|
||||
|
||||
badLdA = "blas: bad leading dimension of A"
|
||||
badLdB = "blas: bad leading dimension of B"
|
||||
badLdC = "blas: bad leading dimension of C"
|
||||
|
||||
shortX = "blas: insufficient length of x"
|
||||
shortY = "blas: insufficient length of y"
|
||||
shortAP = "blas: insufficient length of ap"
|
||||
shortA = "blas: insufficient length of a"
|
||||
shortB = "blas: insufficient length of b"
|
||||
shortC = "blas: insufficient length of c"
|
||||
)
|
190
vendor/gonum.org/v1/gonum/blas/gonum/gemv.go
generated
vendored
Normal file
190
vendor/gonum.org/v1/gonum/blas/gonum/gemv.go
generated
vendored
Normal file
@@ -0,0 +1,190 @@
|
||||
// Copyright ©2018 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package gonum
|
||||
|
||||
import (
|
||||
"gonum.org/v1/gonum/blas"
|
||||
"gonum.org/v1/gonum/internal/asm/f32"
|
||||
"gonum.org/v1/gonum/internal/asm/f64"
|
||||
)
|
||||
|
||||
// TODO(Kunde21): Merge these methods back into level2double/level2single when Sgemv assembly kernels are merged into f32.
|
||||
|
||||
// Dgemv computes
|
||||
// y = alpha * A * x + beta * y if tA = blas.NoTrans
|
||||
// y = alpha * A^T * x + beta * y if tA = blas.Trans or blas.ConjTrans
|
||||
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
|
||||
func (Implementation) Dgemv(tA blas.Transpose, m, n int, alpha float64, a []float64, lda int, x []float64, incX int, beta float64, y []float64, incY int) {
|
||||
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
|
||||
panic(badTranspose)
|
||||
}
|
||||
if m < 0 {
|
||||
panic(mLT0)
|
||||
}
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
if lda < max(1, n) {
|
||||
panic(badLdA)
|
||||
}
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
// Set up indexes
|
||||
lenX := m
|
||||
lenY := n
|
||||
if tA == blas.NoTrans {
|
||||
lenX = n
|
||||
lenY = m
|
||||
}
|
||||
|
||||
// Quick return if possible
|
||||
if m == 0 || n == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
if (incX > 0 && (lenX-1)*incX >= len(x)) || (incX < 0 && (1-lenX)*incX >= len(x)) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && (lenY-1)*incY >= len(y)) || (incY < 0 && (1-lenY)*incY >= len(y)) {
|
||||
panic(shortY)
|
||||
}
|
||||
if len(a) < lda*(m-1)+n {
|
||||
panic(shortA)
|
||||
}
|
||||
|
||||
// Quick return if possible
|
||||
if alpha == 0 && beta == 1 {
|
||||
return
|
||||
}
|
||||
|
||||
if alpha == 0 {
|
||||
// First form y = beta * y
|
||||
if incY > 0 {
|
||||
Implementation{}.Dscal(lenY, beta, y, incY)
|
||||
} else {
|
||||
Implementation{}.Dscal(lenY, beta, y, -incY)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Form y = alpha * A * x + y
|
||||
if tA == blas.NoTrans {
|
||||
f64.GemvN(uintptr(m), uintptr(n), alpha, a, uintptr(lda), x, uintptr(incX), beta, y, uintptr(incY))
|
||||
return
|
||||
}
|
||||
// Cases where a is transposed.
|
||||
f64.GemvT(uintptr(m), uintptr(n), alpha, a, uintptr(lda), x, uintptr(incX), beta, y, uintptr(incY))
|
||||
}
|
||||
|
||||
// Sgemv computes
|
||||
// y = alpha * A * x + beta * y if tA = blas.NoTrans
|
||||
// y = alpha * A^T * x + beta * y if tA = blas.Trans or blas.ConjTrans
|
||||
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Sgemv(tA blas.Transpose, m, n int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int) {
|
||||
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
|
||||
panic(badTranspose)
|
||||
}
|
||||
if m < 0 {
|
||||
panic(mLT0)
|
||||
}
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
if lda < max(1, n) {
|
||||
panic(badLdA)
|
||||
}
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if m == 0 || n == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// Set up indexes
|
||||
lenX := m
|
||||
lenY := n
|
||||
if tA == blas.NoTrans {
|
||||
lenX = n
|
||||
lenY = m
|
||||
}
|
||||
if (incX > 0 && (lenX-1)*incX >= len(x)) || (incX < 0 && (1-lenX)*incX >= len(x)) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && (lenY-1)*incY >= len(y)) || (incY < 0 && (1-lenY)*incY >= len(y)) {
|
||||
panic(shortY)
|
||||
}
|
||||
if len(a) < lda*(m-1)+n {
|
||||
panic(shortA)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if alpha == 0 && beta == 1 {
|
||||
return
|
||||
}
|
||||
|
||||
// First form y = beta * y
|
||||
if incY > 0 {
|
||||
Implementation{}.Sscal(lenY, beta, y, incY)
|
||||
} else {
|
||||
Implementation{}.Sscal(lenY, beta, y, -incY)
|
||||
}
|
||||
|
||||
if alpha == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
var kx, ky int
|
||||
if incX < 0 {
|
||||
kx = -(lenX - 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
ky = -(lenY - 1) * incY
|
||||
}
|
||||
|
||||
// Form y = alpha * A * x + y
|
||||
if tA == blas.NoTrans {
|
||||
if incX == 1 && incY == 1 {
|
||||
for i := 0; i < m; i++ {
|
||||
y[i] += alpha * f32.DotUnitary(a[lda*i:lda*i+n], x[:n])
|
||||
}
|
||||
return
|
||||
}
|
||||
iy := ky
|
||||
for i := 0; i < m; i++ {
|
||||
y[iy] += alpha * f32.DotInc(x, a[lda*i:lda*i+n], uintptr(n), uintptr(incX), 1, uintptr(kx), 0)
|
||||
iy += incY
|
||||
}
|
||||
return
|
||||
}
|
||||
// Cases where a is transposed.
|
||||
if incX == 1 && incY == 1 {
|
||||
for i := 0; i < m; i++ {
|
||||
tmp := alpha * x[i]
|
||||
if tmp != 0 {
|
||||
f32.AxpyUnitaryTo(y, tmp, a[lda*i:lda*i+n], y[:n])
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
ix := kx
|
||||
for i := 0; i < m; i++ {
|
||||
tmp := alpha * x[ix]
|
||||
if tmp != 0 {
|
||||
f32.AxpyInc(tmp, a[lda*i:lda*i+n], y, uintptr(n), 1, uintptr(incY), 0, uintptr(ky))
|
||||
}
|
||||
ix += incX
|
||||
}
|
||||
}
|
58
vendor/gonum.org/v1/gonum/blas/gonum/gonum.go
generated
vendored
Normal file
58
vendor/gonum.org/v1/gonum/blas/gonum/gonum.go
generated
vendored
Normal file
@@ -0,0 +1,58 @@
|
||||
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:generate ./single_precision.bash
|
||||
|
||||
package gonum
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"gonum.org/v1/gonum/internal/math32"
|
||||
)
|
||||
|
||||
type Implementation struct{}
|
||||
|
||||
// [SD]gemm behavior constants. These are kept here to keep them out of the
|
||||
// way during single precision code genration.
|
||||
const (
|
||||
blockSize = 64 // b x b matrix
|
||||
minParBlock = 4 // minimum number of blocks needed to go parallel
|
||||
buffMul = 4 // how big is the buffer relative to the number of workers
|
||||
)
|
||||
|
||||
// subMul is a common type shared by [SD]gemm.
|
||||
type subMul struct {
|
||||
i, j int // index of block
|
||||
}
|
||||
|
||||
func max(a, b int) int {
|
||||
if a > b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
func min(a, b int) int {
|
||||
if a > b {
|
||||
return b
|
||||
}
|
||||
return a
|
||||
}
|
||||
|
||||
// blocks returns the number of divisions of the dimension length with the given
|
||||
// block size.
|
||||
func blocks(dim, bsize int) int {
|
||||
return (dim + bsize - 1) / bsize
|
||||
}
|
||||
|
||||
// dcabs1 returns |real(z)|+|imag(z)|.
|
||||
func dcabs1(z complex128) float64 {
|
||||
return math.Abs(real(z)) + math.Abs(imag(z))
|
||||
}
|
||||
|
||||
// scabs1 returns |real(z)|+|imag(z)|.
|
||||
func scabs1(z complex64) float32 {
|
||||
return math32.Abs(real(z)) + math32.Abs(imag(z))
|
||||
}
|
445
vendor/gonum.org/v1/gonum/blas/gonum/level1cmplx128.go
generated
vendored
Normal file
445
vendor/gonum.org/v1/gonum/blas/gonum/level1cmplx128.go
generated
vendored
Normal file
@@ -0,0 +1,445 @@
|
||||
// Copyright ©2017 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package gonum
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"gonum.org/v1/gonum/blas"
|
||||
"gonum.org/v1/gonum/internal/asm/c128"
|
||||
)
|
||||
|
||||
var _ blas.Complex128Level1 = Implementation{}
|
||||
|
||||
// Dzasum returns the sum of the absolute values of the elements of x
|
||||
// \sum_i |Re(x[i])| + |Im(x[i])|
|
||||
// Dzasum returns 0 if incX is negative.
|
||||
func (Implementation) Dzasum(n int, x []complex128, incX int) float64 {
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
return 0
|
||||
}
|
||||
var sum float64
|
||||
if incX == 1 {
|
||||
if len(x) < n {
|
||||
panic(shortX)
|
||||
}
|
||||
for _, v := range x[:n] {
|
||||
sum += dcabs1(v)
|
||||
}
|
||||
return sum
|
||||
}
|
||||
if (n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
v := x[i*incX]
|
||||
sum += dcabs1(v)
|
||||
}
|
||||
return sum
|
||||
}
|
||||
|
||||
// Dznrm2 computes the Euclidean norm of the complex vector x,
|
||||
// ‖x‖_2 = sqrt(\sum_i x[i] * conj(x[i])).
|
||||
// This function returns 0 if incX is negative.
|
||||
func (Implementation) Dznrm2(n int, x []complex128, incX int) float64 {
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
return 0
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return 0
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
var (
|
||||
scale float64
|
||||
ssq float64 = 1
|
||||
)
|
||||
if incX == 1 {
|
||||
for _, v := range x[:n] {
|
||||
re, im := math.Abs(real(v)), math.Abs(imag(v))
|
||||
if re != 0 {
|
||||
if re > scale {
|
||||
ssq = 1 + ssq*(scale/re)*(scale/re)
|
||||
scale = re
|
||||
} else {
|
||||
ssq += (re / scale) * (re / scale)
|
||||
}
|
||||
}
|
||||
if im != 0 {
|
||||
if im > scale {
|
||||
ssq = 1 + ssq*(scale/im)*(scale/im)
|
||||
scale = im
|
||||
} else {
|
||||
ssq += (im / scale) * (im / scale)
|
||||
}
|
||||
}
|
||||
}
|
||||
if math.IsInf(scale, 1) {
|
||||
return math.Inf(1)
|
||||
}
|
||||
return scale * math.Sqrt(ssq)
|
||||
}
|
||||
for ix := 0; ix < n*incX; ix += incX {
|
||||
re, im := math.Abs(real(x[ix])), math.Abs(imag(x[ix]))
|
||||
if re != 0 {
|
||||
if re > scale {
|
||||
ssq = 1 + ssq*(scale/re)*(scale/re)
|
||||
scale = re
|
||||
} else {
|
||||
ssq += (re / scale) * (re / scale)
|
||||
}
|
||||
}
|
||||
if im != 0 {
|
||||
if im > scale {
|
||||
ssq = 1 + ssq*(scale/im)*(scale/im)
|
||||
scale = im
|
||||
} else {
|
||||
ssq += (im / scale) * (im / scale)
|
||||
}
|
||||
}
|
||||
}
|
||||
if math.IsInf(scale, 1) {
|
||||
return math.Inf(1)
|
||||
}
|
||||
return scale * math.Sqrt(ssq)
|
||||
}
|
||||
|
||||
// Izamax returns the index of the first element of x having largest |Re(·)|+|Im(·)|.
|
||||
// Izamax returns -1 if n is 0 or incX is negative.
|
||||
func (Implementation) Izamax(n int, x []complex128, incX int) int {
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
// Return invalid index.
|
||||
return -1
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
// Return invalid index.
|
||||
return -1
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if len(x) <= (n-1)*incX {
|
||||
panic(shortX)
|
||||
}
|
||||
idx := 0
|
||||
max := dcabs1(x[0])
|
||||
if incX == 1 {
|
||||
for i, v := range x[1:n] {
|
||||
absV := dcabs1(v)
|
||||
if absV > max {
|
||||
max = absV
|
||||
idx = i + 1
|
||||
}
|
||||
}
|
||||
return idx
|
||||
}
|
||||
ix := incX
|
||||
for i := 1; i < n; i++ {
|
||||
absV := dcabs1(x[ix])
|
||||
if absV > max {
|
||||
max = absV
|
||||
idx = i
|
||||
}
|
||||
ix += incX
|
||||
}
|
||||
return idx
|
||||
}
|
||||
|
||||
// Zaxpy adds alpha times x to y:
|
||||
// y[i] += alpha * x[i] for all i
|
||||
func (Implementation) Zaxpy(n int, alpha complex128, x []complex128, incX int, y []complex128, incY int) {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
|
||||
panic(shortY)
|
||||
}
|
||||
if alpha == 0 {
|
||||
return
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
c128.AxpyUnitary(alpha, x[:n], y[:n])
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (1 - n) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (1 - n) * incY
|
||||
}
|
||||
c128.AxpyInc(alpha, x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
|
||||
}
|
||||
|
||||
// Zcopy copies the vector x to vector y.
|
||||
func (Implementation) Zcopy(n int, x []complex128, incX int, y []complex128, incY int) {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
|
||||
panic(shortY)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
copy(y[:n], x[:n])
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
y[iy] = x[ix]
|
||||
ix += incX
|
||||
iy += incY
|
||||
}
|
||||
}
|
||||
|
||||
// Zdotc computes the dot product
|
||||
// x^H · y
|
||||
// of two complex vectors x and y.
|
||||
func (Implementation) Zdotc(n int, x []complex128, incX int, y []complex128, incY int) complex128 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n <= 0 {
|
||||
if n == 0 {
|
||||
return 0
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
if len(x) < n {
|
||||
panic(shortX)
|
||||
}
|
||||
if len(y) < n {
|
||||
panic(shortY)
|
||||
}
|
||||
return c128.DotcUnitary(x[:n], y[:n])
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
if ix >= len(x) || (n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
if iy >= len(y) || (n-1)*incY >= len(y) {
|
||||
panic(shortY)
|
||||
}
|
||||
return c128.DotcInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
|
||||
}
|
||||
|
||||
// Zdotu computes the dot product
|
||||
// x^T · y
|
||||
// of two complex vectors x and y.
|
||||
func (Implementation) Zdotu(n int, x []complex128, incX int, y []complex128, incY int) complex128 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n <= 0 {
|
||||
if n == 0 {
|
||||
return 0
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
if len(x) < n {
|
||||
panic(shortX)
|
||||
}
|
||||
if len(y) < n {
|
||||
panic(shortY)
|
||||
}
|
||||
return c128.DotuUnitary(x[:n], y[:n])
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
if ix >= len(x) || (n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
if iy >= len(y) || (n-1)*incY >= len(y) {
|
||||
panic(shortY)
|
||||
}
|
||||
return c128.DotuInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
|
||||
}
|
||||
|
||||
// Zdscal scales the vector x by a real scalar alpha.
|
||||
// Zdscal has no effect if incX < 0.
|
||||
func (Implementation) Zdscal(n int, alpha float64, x []complex128, incX int) {
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
return
|
||||
}
|
||||
if (n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if alpha == 0 {
|
||||
if incX == 1 {
|
||||
x = x[:n]
|
||||
for i := range x {
|
||||
x[i] = 0
|
||||
}
|
||||
return
|
||||
}
|
||||
for ix := 0; ix < n*incX; ix += incX {
|
||||
x[ix] = 0
|
||||
}
|
||||
return
|
||||
}
|
||||
if incX == 1 {
|
||||
x = x[:n]
|
||||
for i, v := range x {
|
||||
x[i] = complex(alpha*real(v), alpha*imag(v))
|
||||
}
|
||||
return
|
||||
}
|
||||
for ix := 0; ix < n*incX; ix += incX {
|
||||
v := x[ix]
|
||||
x[ix] = complex(alpha*real(v), alpha*imag(v))
|
||||
}
|
||||
}
|
||||
|
||||
// Zscal scales the vector x by a complex scalar alpha.
|
||||
// Zscal has no effect if incX < 0.
|
||||
func (Implementation) Zscal(n int, alpha complex128, x []complex128, incX int) {
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
return
|
||||
}
|
||||
if (n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if alpha == 0 {
|
||||
if incX == 1 {
|
||||
x = x[:n]
|
||||
for i := range x {
|
||||
x[i] = 0
|
||||
}
|
||||
return
|
||||
}
|
||||
for ix := 0; ix < n*incX; ix += incX {
|
||||
x[ix] = 0
|
||||
}
|
||||
return
|
||||
}
|
||||
if incX == 1 {
|
||||
c128.ScalUnitary(alpha, x[:n])
|
||||
return
|
||||
}
|
||||
c128.ScalInc(alpha, x, uintptr(n), uintptr(incX))
|
||||
}
|
||||
|
||||
// Zswap exchanges the elements of two complex vectors x and y.
|
||||
func (Implementation) Zswap(n int, x []complex128, incX int, y []complex128, incY int) {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
|
||||
panic(shortY)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
x = x[:n]
|
||||
for i, v := range x {
|
||||
x[i], y[i] = y[i], v
|
||||
}
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
x[ix], y[iy] = y[iy], x[ix]
|
||||
ix += incX
|
||||
iy += incY
|
||||
}
|
||||
}
|
467
vendor/gonum.org/v1/gonum/blas/gonum/level1cmplx64.go
generated
vendored
Normal file
467
vendor/gonum.org/v1/gonum/blas/gonum/level1cmplx64.go
generated
vendored
Normal file
@@ -0,0 +1,467 @@
|
||||
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
|
||||
|
||||
// Copyright ©2017 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package gonum
|
||||
|
||||
import (
|
||||
math "gonum.org/v1/gonum/internal/math32"
|
||||
|
||||
"gonum.org/v1/gonum/blas"
|
||||
"gonum.org/v1/gonum/internal/asm/c64"
|
||||
)
|
||||
|
||||
var _ blas.Complex64Level1 = Implementation{}
|
||||
|
||||
// Scasum returns the sum of the absolute values of the elements of x
|
||||
// \sum_i |Re(x[i])| + |Im(x[i])|
|
||||
// Scasum returns 0 if incX is negative.
|
||||
//
|
||||
// Complex64 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Scasum(n int, x []complex64, incX int) float32 {
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
return 0
|
||||
}
|
||||
var sum float32
|
||||
if incX == 1 {
|
||||
if len(x) < n {
|
||||
panic(shortX)
|
||||
}
|
||||
for _, v := range x[:n] {
|
||||
sum += scabs1(v)
|
||||
}
|
||||
return sum
|
||||
}
|
||||
if (n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
v := x[i*incX]
|
||||
sum += scabs1(v)
|
||||
}
|
||||
return sum
|
||||
}
|
||||
|
||||
// Scnrm2 computes the Euclidean norm of the complex vector x,
|
||||
// ‖x‖_2 = sqrt(\sum_i x[i] * conj(x[i])).
|
||||
// This function returns 0 if incX is negative.
|
||||
//
|
||||
// Complex64 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Scnrm2(n int, x []complex64, incX int) float32 {
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
return 0
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return 0
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
var (
|
||||
scale float32
|
||||
ssq float32 = 1
|
||||
)
|
||||
if incX == 1 {
|
||||
for _, v := range x[:n] {
|
||||
re, im := math.Abs(real(v)), math.Abs(imag(v))
|
||||
if re != 0 {
|
||||
if re > scale {
|
||||
ssq = 1 + ssq*(scale/re)*(scale/re)
|
||||
scale = re
|
||||
} else {
|
||||
ssq += (re / scale) * (re / scale)
|
||||
}
|
||||
}
|
||||
if im != 0 {
|
||||
if im > scale {
|
||||
ssq = 1 + ssq*(scale/im)*(scale/im)
|
||||
scale = im
|
||||
} else {
|
||||
ssq += (im / scale) * (im / scale)
|
||||
}
|
||||
}
|
||||
}
|
||||
if math.IsInf(scale, 1) {
|
||||
return math.Inf(1)
|
||||
}
|
||||
return scale * math.Sqrt(ssq)
|
||||
}
|
||||
for ix := 0; ix < n*incX; ix += incX {
|
||||
re, im := math.Abs(real(x[ix])), math.Abs(imag(x[ix]))
|
||||
if re != 0 {
|
||||
if re > scale {
|
||||
ssq = 1 + ssq*(scale/re)*(scale/re)
|
||||
scale = re
|
||||
} else {
|
||||
ssq += (re / scale) * (re / scale)
|
||||
}
|
||||
}
|
||||
if im != 0 {
|
||||
if im > scale {
|
||||
ssq = 1 + ssq*(scale/im)*(scale/im)
|
||||
scale = im
|
||||
} else {
|
||||
ssq += (im / scale) * (im / scale)
|
||||
}
|
||||
}
|
||||
}
|
||||
if math.IsInf(scale, 1) {
|
||||
return math.Inf(1)
|
||||
}
|
||||
return scale * math.Sqrt(ssq)
|
||||
}
|
||||
|
||||
// Icamax returns the index of the first element of x having largest |Re(·)|+|Im(·)|.
|
||||
// Icamax returns -1 if n is 0 or incX is negative.
|
||||
//
|
||||
// Complex64 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Icamax(n int, x []complex64, incX int) int {
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
// Return invalid index.
|
||||
return -1
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
// Return invalid index.
|
||||
return -1
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if len(x) <= (n-1)*incX {
|
||||
panic(shortX)
|
||||
}
|
||||
idx := 0
|
||||
max := scabs1(x[0])
|
||||
if incX == 1 {
|
||||
for i, v := range x[1:n] {
|
||||
absV := scabs1(v)
|
||||
if absV > max {
|
||||
max = absV
|
||||
idx = i + 1
|
||||
}
|
||||
}
|
||||
return idx
|
||||
}
|
||||
ix := incX
|
||||
for i := 1; i < n; i++ {
|
||||
absV := scabs1(x[ix])
|
||||
if absV > max {
|
||||
max = absV
|
||||
idx = i
|
||||
}
|
||||
ix += incX
|
||||
}
|
||||
return idx
|
||||
}
|
||||
|
||||
// Caxpy adds alpha times x to y:
|
||||
// y[i] += alpha * x[i] for all i
|
||||
//
|
||||
// Complex64 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Caxpy(n int, alpha complex64, x []complex64, incX int, y []complex64, incY int) {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
|
||||
panic(shortY)
|
||||
}
|
||||
if alpha == 0 {
|
||||
return
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
c64.AxpyUnitary(alpha, x[:n], y[:n])
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (1 - n) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (1 - n) * incY
|
||||
}
|
||||
c64.AxpyInc(alpha, x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
|
||||
}
|
||||
|
||||
// Ccopy copies the vector x to vector y.
|
||||
//
|
||||
// Complex64 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Ccopy(n int, x []complex64, incX int, y []complex64, incY int) {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
|
||||
panic(shortY)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
copy(y[:n], x[:n])
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
y[iy] = x[ix]
|
||||
ix += incX
|
||||
iy += incY
|
||||
}
|
||||
}
|
||||
|
||||
// Cdotc computes the dot product
|
||||
// x^H · y
|
||||
// of two complex vectors x and y.
|
||||
//
|
||||
// Complex64 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Cdotc(n int, x []complex64, incX int, y []complex64, incY int) complex64 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n <= 0 {
|
||||
if n == 0 {
|
||||
return 0
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
if len(x) < n {
|
||||
panic(shortX)
|
||||
}
|
||||
if len(y) < n {
|
||||
panic(shortY)
|
||||
}
|
||||
return c64.DotcUnitary(x[:n], y[:n])
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
if ix >= len(x) || (n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
if iy >= len(y) || (n-1)*incY >= len(y) {
|
||||
panic(shortY)
|
||||
}
|
||||
return c64.DotcInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
|
||||
}
|
||||
|
||||
// Cdotu computes the dot product
|
||||
// x^T · y
|
||||
// of two complex vectors x and y.
|
||||
//
|
||||
// Complex64 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Cdotu(n int, x []complex64, incX int, y []complex64, incY int) complex64 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n <= 0 {
|
||||
if n == 0 {
|
||||
return 0
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
if len(x) < n {
|
||||
panic(shortX)
|
||||
}
|
||||
if len(y) < n {
|
||||
panic(shortY)
|
||||
}
|
||||
return c64.DotuUnitary(x[:n], y[:n])
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
if ix >= len(x) || (n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
if iy >= len(y) || (n-1)*incY >= len(y) {
|
||||
panic(shortY)
|
||||
}
|
||||
return c64.DotuInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
|
||||
}
|
||||
|
||||
// Csscal scales the vector x by a real scalar alpha.
|
||||
// Csscal has no effect if incX < 0.
|
||||
//
|
||||
// Complex64 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Csscal(n int, alpha float32, x []complex64, incX int) {
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
return
|
||||
}
|
||||
if (n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if alpha == 0 {
|
||||
if incX == 1 {
|
||||
x = x[:n]
|
||||
for i := range x {
|
||||
x[i] = 0
|
||||
}
|
||||
return
|
||||
}
|
||||
for ix := 0; ix < n*incX; ix += incX {
|
||||
x[ix] = 0
|
||||
}
|
||||
return
|
||||
}
|
||||
if incX == 1 {
|
||||
x = x[:n]
|
||||
for i, v := range x {
|
||||
x[i] = complex(alpha*real(v), alpha*imag(v))
|
||||
}
|
||||
return
|
||||
}
|
||||
for ix := 0; ix < n*incX; ix += incX {
|
||||
v := x[ix]
|
||||
x[ix] = complex(alpha*real(v), alpha*imag(v))
|
||||
}
|
||||
}
|
||||
|
||||
// Cscal scales the vector x by a complex scalar alpha.
|
||||
// Cscal has no effect if incX < 0.
|
||||
//
|
||||
// Complex64 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Cscal(n int, alpha complex64, x []complex64, incX int) {
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
return
|
||||
}
|
||||
if (n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if alpha == 0 {
|
||||
if incX == 1 {
|
||||
x = x[:n]
|
||||
for i := range x {
|
||||
x[i] = 0
|
||||
}
|
||||
return
|
||||
}
|
||||
for ix := 0; ix < n*incX; ix += incX {
|
||||
x[ix] = 0
|
||||
}
|
||||
return
|
||||
}
|
||||
if incX == 1 {
|
||||
c64.ScalUnitary(alpha, x[:n])
|
||||
return
|
||||
}
|
||||
c64.ScalInc(alpha, x, uintptr(n), uintptr(incX))
|
||||
}
|
||||
|
||||
// Cswap exchanges the elements of two complex vectors x and y.
|
||||
//
|
||||
// Complex64 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Cswap(n int, x []complex64, incX int, y []complex64, incY int) {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
|
||||
panic(shortY)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
x = x[:n]
|
||||
for i, v := range x {
|
||||
x[i], y[i] = y[i], v
|
||||
}
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
x[ix], y[iy] = y[iy], x[ix]
|
||||
ix += incX
|
||||
iy += incY
|
||||
}
|
||||
}
|
644
vendor/gonum.org/v1/gonum/blas/gonum/level1float32.go
generated
vendored
Normal file
644
vendor/gonum.org/v1/gonum/blas/gonum/level1float32.go
generated
vendored
Normal file
@@ -0,0 +1,644 @@
|
||||
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
|
||||
|
||||
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package gonum
|
||||
|
||||
import (
|
||||
math "gonum.org/v1/gonum/internal/math32"
|
||||
|
||||
"gonum.org/v1/gonum/blas"
|
||||
"gonum.org/v1/gonum/internal/asm/f32"
|
||||
)
|
||||
|
||||
var _ blas.Float32Level1 = Implementation{}
|
||||
|
||||
// Snrm2 computes the Euclidean norm of a vector,
|
||||
// sqrt(\sum_i x[i] * x[i]).
|
||||
// This function returns 0 if incX is negative.
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Snrm2(n int, x []float32, incX int) float32 {
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
return 0
|
||||
}
|
||||
if len(x) <= (n-1)*incX {
|
||||
panic(shortX)
|
||||
}
|
||||
if n < 2 {
|
||||
if n == 1 {
|
||||
return math.Abs(x[0])
|
||||
}
|
||||
if n == 0 {
|
||||
return 0
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
var (
|
||||
scale float32 = 0
|
||||
sumSquares float32 = 1
|
||||
)
|
||||
if incX == 1 {
|
||||
x = x[:n]
|
||||
for _, v := range x {
|
||||
if v == 0 {
|
||||
continue
|
||||
}
|
||||
absxi := math.Abs(v)
|
||||
if math.IsNaN(absxi) {
|
||||
return math.NaN()
|
||||
}
|
||||
if scale < absxi {
|
||||
sumSquares = 1 + sumSquares*(scale/absxi)*(scale/absxi)
|
||||
scale = absxi
|
||||
} else {
|
||||
sumSquares = sumSquares + (absxi/scale)*(absxi/scale)
|
||||
}
|
||||
}
|
||||
if math.IsInf(scale, 1) {
|
||||
return math.Inf(1)
|
||||
}
|
||||
return scale * math.Sqrt(sumSquares)
|
||||
}
|
||||
for ix := 0; ix < n*incX; ix += incX {
|
||||
val := x[ix]
|
||||
if val == 0 {
|
||||
continue
|
||||
}
|
||||
absxi := math.Abs(val)
|
||||
if math.IsNaN(absxi) {
|
||||
return math.NaN()
|
||||
}
|
||||
if scale < absxi {
|
||||
sumSquares = 1 + sumSquares*(scale/absxi)*(scale/absxi)
|
||||
scale = absxi
|
||||
} else {
|
||||
sumSquares = sumSquares + (absxi/scale)*(absxi/scale)
|
||||
}
|
||||
}
|
||||
if math.IsInf(scale, 1) {
|
||||
return math.Inf(1)
|
||||
}
|
||||
return scale * math.Sqrt(sumSquares)
|
||||
}
|
||||
|
||||
// Sasum computes the sum of the absolute values of the elements of x.
|
||||
// \sum_i |x[i]|
|
||||
// Sasum returns 0 if incX is negative.
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Sasum(n int, x []float32, incX int) float32 {
|
||||
var sum float32
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
return 0
|
||||
}
|
||||
if len(x) <= (n-1)*incX {
|
||||
panic(shortX)
|
||||
}
|
||||
if incX == 1 {
|
||||
x = x[:n]
|
||||
for _, v := range x {
|
||||
sum += math.Abs(v)
|
||||
}
|
||||
return sum
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
sum += math.Abs(x[i*incX])
|
||||
}
|
||||
return sum
|
||||
}
|
||||
|
||||
// Isamax returns the index of an element of x with the largest absolute value.
|
||||
// If there are multiple such indices the earliest is returned.
|
||||
// Isamax returns -1 if n == 0.
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Isamax(n int, x []float32, incX int) int {
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
return -1
|
||||
}
|
||||
if len(x) <= (n-1)*incX {
|
||||
panic(shortX)
|
||||
}
|
||||
if n < 2 {
|
||||
if n == 1 {
|
||||
return 0
|
||||
}
|
||||
if n == 0 {
|
||||
return -1 // Netlib returns invalid index when n == 0.
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
idx := 0
|
||||
max := math.Abs(x[0])
|
||||
if incX == 1 {
|
||||
for i, v := range x[:n] {
|
||||
absV := math.Abs(v)
|
||||
if absV > max {
|
||||
max = absV
|
||||
idx = i
|
||||
}
|
||||
}
|
||||
return idx
|
||||
}
|
||||
ix := incX
|
||||
for i := 1; i < n; i++ {
|
||||
v := x[ix]
|
||||
absV := math.Abs(v)
|
||||
if absV > max {
|
||||
max = absV
|
||||
idx = i
|
||||
}
|
||||
ix += incX
|
||||
}
|
||||
return idx
|
||||
}
|
||||
|
||||
// Sswap exchanges the elements of two vectors.
|
||||
// x[i], y[i] = y[i], x[i] for all i
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Sswap(n int, x []float32, incX int, y []float32, incY int) {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
|
||||
panic(shortY)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
x = x[:n]
|
||||
for i, v := range x {
|
||||
x[i], y[i] = y[i], v
|
||||
}
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
x[ix], y[iy] = y[iy], x[ix]
|
||||
ix += incX
|
||||
iy += incY
|
||||
}
|
||||
}
|
||||
|
||||
// Scopy copies the elements of x into the elements of y.
|
||||
// y[i] = x[i] for all i
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Scopy(n int, x []float32, incX int, y []float32, incY int) {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
|
||||
panic(shortY)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
copy(y[:n], x[:n])
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
y[iy] = x[ix]
|
||||
ix += incX
|
||||
iy += incY
|
||||
}
|
||||
}
|
||||
|
||||
// Saxpy adds alpha times x to y
|
||||
// y[i] += alpha * x[i] for all i
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Saxpy(n int, alpha float32, x []float32, incX int, y []float32, incY int) {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
|
||||
panic(shortY)
|
||||
}
|
||||
if alpha == 0 {
|
||||
return
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
f32.AxpyUnitary(alpha, x[:n], y[:n])
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
f32.AxpyInc(alpha, x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
|
||||
}
|
||||
|
||||
// Srotg computes the plane rotation
|
||||
// _ _ _ _ _ _
|
||||
// | c s | | a | | r |
|
||||
// | -s c | * | b | = | 0 |
|
||||
// ‾ ‾ ‾ ‾ ‾ ‾
|
||||
// where
|
||||
// r = ±√(a^2 + b^2)
|
||||
// c = a/r, the cosine of the plane rotation
|
||||
// s = b/r, the sine of the plane rotation
|
||||
//
|
||||
// NOTE: There is a discrepancy between the reference implementation and the BLAS
|
||||
// technical manual regarding the sign for r when a or b are zero.
|
||||
// Srotg agrees with the definition in the manual and other
|
||||
// common BLAS implementations.
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Srotg(a, b float32) (c, s, r, z float32) {
|
||||
if b == 0 && a == 0 {
|
||||
return 1, 0, a, 0
|
||||
}
|
||||
absA := math.Abs(a)
|
||||
absB := math.Abs(b)
|
||||
aGTb := absA > absB
|
||||
r = math.Hypot(a, b)
|
||||
if aGTb {
|
||||
r = math.Copysign(r, a)
|
||||
} else {
|
||||
r = math.Copysign(r, b)
|
||||
}
|
||||
c = a / r
|
||||
s = b / r
|
||||
if aGTb {
|
||||
z = s
|
||||
} else if c != 0 { // r == 0 case handled above
|
||||
z = 1 / c
|
||||
} else {
|
||||
z = 1
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Srotmg computes the modified Givens rotation. See
|
||||
// http://www.netlib.org/lapack/explore-html/df/deb/drotmg_8f.html
|
||||
// for more details.
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Srotmg(d1, d2, x1, y1 float32) (p blas.SrotmParams, rd1, rd2, rx1 float32) {
|
||||
// The implementation of Drotmg used here is taken from Hopkins 1997
|
||||
// Appendix A: https://doi.org/10.1145/289251.289253
|
||||
// with the exception of the gam constants below.
|
||||
|
||||
const (
|
||||
gam = 4096.0
|
||||
gamsq = gam * gam
|
||||
rgamsq = 1.0 / gamsq
|
||||
)
|
||||
|
||||
if d1 < 0 {
|
||||
p.Flag = blas.Rescaling // Error state.
|
||||
return p, 0, 0, 0
|
||||
}
|
||||
|
||||
if d2 == 0 || y1 == 0 {
|
||||
p.Flag = blas.Identity
|
||||
return p, d1, d2, x1
|
||||
}
|
||||
|
||||
var h11, h12, h21, h22 float32
|
||||
if (d1 == 0 || x1 == 0) && d2 > 0 {
|
||||
p.Flag = blas.Diagonal
|
||||
h12 = 1
|
||||
h21 = -1
|
||||
x1 = y1
|
||||
d1, d2 = d2, d1
|
||||
} else {
|
||||
p2 := d2 * y1
|
||||
p1 := d1 * x1
|
||||
q2 := p2 * y1
|
||||
q1 := p1 * x1
|
||||
if math.Abs(q1) > math.Abs(q2) {
|
||||
p.Flag = blas.OffDiagonal
|
||||
h11 = 1
|
||||
h22 = 1
|
||||
h21 = -y1 / x1
|
||||
h12 = p2 / p1
|
||||
u := 1 - h12*h21
|
||||
if u <= 0 {
|
||||
p.Flag = blas.Rescaling // Error state.
|
||||
return p, 0, 0, 0
|
||||
}
|
||||
|
||||
d1 /= u
|
||||
d2 /= u
|
||||
x1 *= u
|
||||
} else {
|
||||
if q2 < 0 {
|
||||
p.Flag = blas.Rescaling // Error state.
|
||||
return p, 0, 0, 0
|
||||
}
|
||||
|
||||
p.Flag = blas.Diagonal
|
||||
h21 = -1
|
||||
h12 = 1
|
||||
h11 = p1 / p2
|
||||
h22 = x1 / y1
|
||||
u := 1 + h11*h22
|
||||
d1, d2 = d2/u, d1/u
|
||||
x1 = y1 * u
|
||||
}
|
||||
}
|
||||
|
||||
for d1 <= rgamsq && d1 != 0 {
|
||||
p.Flag = blas.Rescaling
|
||||
d1 = (d1 * gam) * gam
|
||||
x1 /= gam
|
||||
h11 /= gam
|
||||
h12 /= gam
|
||||
}
|
||||
for d1 > gamsq {
|
||||
p.Flag = blas.Rescaling
|
||||
d1 = (d1 / gam) / gam
|
||||
x1 *= gam
|
||||
h11 *= gam
|
||||
h12 *= gam
|
||||
}
|
||||
|
||||
for math.Abs(d2) <= rgamsq && d2 != 0 {
|
||||
p.Flag = blas.Rescaling
|
||||
d2 = (d2 * gam) * gam
|
||||
h21 /= gam
|
||||
h22 /= gam
|
||||
}
|
||||
for math.Abs(d2) > gamsq {
|
||||
p.Flag = blas.Rescaling
|
||||
d2 = (d2 / gam) / gam
|
||||
h21 *= gam
|
||||
h22 *= gam
|
||||
}
|
||||
|
||||
switch p.Flag {
|
||||
case blas.Diagonal:
|
||||
p.H = [4]float32{0: h11, 3: h22}
|
||||
case blas.OffDiagonal:
|
||||
p.H = [4]float32{1: h21, 2: h12}
|
||||
case blas.Rescaling:
|
||||
p.H = [4]float32{h11, h21, h12, h22}
|
||||
default:
|
||||
panic(badFlag)
|
||||
}
|
||||
|
||||
return p, d1, d2, x1
|
||||
}
|
||||
|
||||
// Srot applies a plane transformation.
|
||||
// x[i] = c * x[i] + s * y[i]
|
||||
// y[i] = c * y[i] - s * x[i]
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Srot(n int, x []float32, incX int, y []float32, incY int, c float32, s float32) {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
|
||||
panic(shortY)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
x = x[:n]
|
||||
for i, vx := range x {
|
||||
vy := y[i]
|
||||
x[i], y[i] = c*vx+s*vy, c*vy-s*vx
|
||||
}
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
vx := x[ix]
|
||||
vy := y[iy]
|
||||
x[ix], y[iy] = c*vx+s*vy, c*vy-s*vx
|
||||
ix += incX
|
||||
iy += incY
|
||||
}
|
||||
}
|
||||
|
||||
// Srotm applies the modified Givens rotation to the 2×n matrix.
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Srotm(n int, x []float32, incX int, y []float32, incY int, p blas.SrotmParams) {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n <= 0 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
|
||||
panic(shortY)
|
||||
}
|
||||
|
||||
if p.Flag == blas.Identity {
|
||||
return
|
||||
}
|
||||
|
||||
switch p.Flag {
|
||||
case blas.Rescaling:
|
||||
h11 := p.H[0]
|
||||
h12 := p.H[2]
|
||||
h21 := p.H[1]
|
||||
h22 := p.H[3]
|
||||
if incX == 1 && incY == 1 {
|
||||
x = x[:n]
|
||||
for i, vx := range x {
|
||||
vy := y[i]
|
||||
x[i], y[i] = vx*h11+vy*h12, vx*h21+vy*h22
|
||||
}
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
vx := x[ix]
|
||||
vy := y[iy]
|
||||
x[ix], y[iy] = vx*h11+vy*h12, vx*h21+vy*h22
|
||||
ix += incX
|
||||
iy += incY
|
||||
}
|
||||
case blas.OffDiagonal:
|
||||
h12 := p.H[2]
|
||||
h21 := p.H[1]
|
||||
if incX == 1 && incY == 1 {
|
||||
x = x[:n]
|
||||
for i, vx := range x {
|
||||
vy := y[i]
|
||||
x[i], y[i] = vx+vy*h12, vx*h21+vy
|
||||
}
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
vx := x[ix]
|
||||
vy := y[iy]
|
||||
x[ix], y[iy] = vx+vy*h12, vx*h21+vy
|
||||
ix += incX
|
||||
iy += incY
|
||||
}
|
||||
case blas.Diagonal:
|
||||
h11 := p.H[0]
|
||||
h22 := p.H[3]
|
||||
if incX == 1 && incY == 1 {
|
||||
x = x[:n]
|
||||
for i, vx := range x {
|
||||
vy := y[i]
|
||||
x[i], y[i] = vx*h11+vy, -vx+vy*h22
|
||||
}
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
vx := x[ix]
|
||||
vy := y[iy]
|
||||
x[ix], y[iy] = vx*h11+vy, -vx+vy*h22
|
||||
ix += incX
|
||||
iy += incY
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Sscal scales x by alpha.
|
||||
// x[i] *= alpha
|
||||
// Sscal has no effect if incX < 0.
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Sscal(n int, alpha float32, x []float32, incX int) {
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
return
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
if alpha == 0 {
|
||||
if incX == 1 {
|
||||
x = x[:n]
|
||||
for i := range x {
|
||||
x[i] = 0
|
||||
}
|
||||
return
|
||||
}
|
||||
for ix := 0; ix < n*incX; ix += incX {
|
||||
x[ix] = 0
|
||||
}
|
||||
return
|
||||
}
|
||||
if incX == 1 {
|
||||
f32.ScalUnitary(alpha, x[:n])
|
||||
return
|
||||
}
|
||||
f32.ScalInc(alpha, x, uintptr(n), uintptr(incX))
|
||||
}
|
53
vendor/gonum.org/v1/gonum/blas/gonum/level1float32_dsdot.go
generated
vendored
Normal file
53
vendor/gonum.org/v1/gonum/blas/gonum/level1float32_dsdot.go
generated
vendored
Normal file
@@ -0,0 +1,53 @@
|
||||
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
|
||||
|
||||
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package gonum
|
||||
|
||||
import (
|
||||
"gonum.org/v1/gonum/internal/asm/f32"
|
||||
)
|
||||
|
||||
// Dsdot computes the dot product of the two vectors
|
||||
// \sum_i x[i]*y[i]
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Dsdot(n int, x []float32, incX int, y []float32, incY int) float64 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n <= 0 {
|
||||
if n == 0 {
|
||||
return 0
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
if len(x) < n {
|
||||
panic(shortX)
|
||||
}
|
||||
if len(y) < n {
|
||||
panic(shortY)
|
||||
}
|
||||
return f32.DdotUnitary(x[:n], y[:n])
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
if ix >= len(x) || ix+(n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
if iy >= len(y) || iy+(n-1)*incY >= len(y) {
|
||||
panic(shortY)
|
||||
}
|
||||
return f32.DdotInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
|
||||
}
|
53
vendor/gonum.org/v1/gonum/blas/gonum/level1float32_sdot.go
generated
vendored
Normal file
53
vendor/gonum.org/v1/gonum/blas/gonum/level1float32_sdot.go
generated
vendored
Normal file
@@ -0,0 +1,53 @@
|
||||
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
|
||||
|
||||
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package gonum
|
||||
|
||||
import (
|
||||
"gonum.org/v1/gonum/internal/asm/f32"
|
||||
)
|
||||
|
||||
// Sdot computes the dot product of the two vectors
|
||||
// \sum_i x[i]*y[i]
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Sdot(n int, x []float32, incX int, y []float32, incY int) float32 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n <= 0 {
|
||||
if n == 0 {
|
||||
return 0
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
if len(x) < n {
|
||||
panic(shortX)
|
||||
}
|
||||
if len(y) < n {
|
||||
panic(shortY)
|
||||
}
|
||||
return f32.DotUnitary(x[:n], y[:n])
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
if ix >= len(x) || ix+(n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
if iy >= len(y) || iy+(n-1)*incY >= len(y) {
|
||||
panic(shortY)
|
||||
}
|
||||
return f32.DotInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
|
||||
}
|
53
vendor/gonum.org/v1/gonum/blas/gonum/level1float32_sdsdot.go
generated
vendored
Normal file
53
vendor/gonum.org/v1/gonum/blas/gonum/level1float32_sdsdot.go
generated
vendored
Normal file
@@ -0,0 +1,53 @@
|
||||
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
|
||||
|
||||
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package gonum
|
||||
|
||||
import (
|
||||
"gonum.org/v1/gonum/internal/asm/f32"
|
||||
)
|
||||
|
||||
// Sdsdot computes the dot product of the two vectors plus a constant
|
||||
// alpha + \sum_i x[i]*y[i]
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Sdsdot(n int, alpha float32, x []float32, incX int, y []float32, incY int) float32 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n <= 0 {
|
||||
if n == 0 {
|
||||
return 0
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
if len(x) < n {
|
||||
panic(shortX)
|
||||
}
|
||||
if len(y) < n {
|
||||
panic(shortY)
|
||||
}
|
||||
return alpha + float32(f32.DdotUnitary(x[:n], y[:n]))
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
if ix >= len(x) || ix+(n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
if iy >= len(y) || iy+(n-1)*incY >= len(y) {
|
||||
panic(shortY)
|
||||
}
|
||||
return alpha + float32(f32.DdotInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy)))
|
||||
}
|
620
vendor/gonum.org/v1/gonum/blas/gonum/level1float64.go
generated
vendored
Normal file
620
vendor/gonum.org/v1/gonum/blas/gonum/level1float64.go
generated
vendored
Normal file
@@ -0,0 +1,620 @@
|
||||
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package gonum
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"gonum.org/v1/gonum/blas"
|
||||
"gonum.org/v1/gonum/internal/asm/f64"
|
||||
)
|
||||
|
||||
var _ blas.Float64Level1 = Implementation{}
|
||||
|
||||
// Dnrm2 computes the Euclidean norm of a vector,
|
||||
// sqrt(\sum_i x[i] * x[i]).
|
||||
// This function returns 0 if incX is negative.
|
||||
func (Implementation) Dnrm2(n int, x []float64, incX int) float64 {
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
return 0
|
||||
}
|
||||
if len(x) <= (n-1)*incX {
|
||||
panic(shortX)
|
||||
}
|
||||
if n < 2 {
|
||||
if n == 1 {
|
||||
return math.Abs(x[0])
|
||||
}
|
||||
if n == 0 {
|
||||
return 0
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
var (
|
||||
scale float64 = 0
|
||||
sumSquares float64 = 1
|
||||
)
|
||||
if incX == 1 {
|
||||
x = x[:n]
|
||||
for _, v := range x {
|
||||
if v == 0 {
|
||||
continue
|
||||
}
|
||||
absxi := math.Abs(v)
|
||||
if math.IsNaN(absxi) {
|
||||
return math.NaN()
|
||||
}
|
||||
if scale < absxi {
|
||||
sumSquares = 1 + sumSquares*(scale/absxi)*(scale/absxi)
|
||||
scale = absxi
|
||||
} else {
|
||||
sumSquares = sumSquares + (absxi/scale)*(absxi/scale)
|
||||
}
|
||||
}
|
||||
if math.IsInf(scale, 1) {
|
||||
return math.Inf(1)
|
||||
}
|
||||
return scale * math.Sqrt(sumSquares)
|
||||
}
|
||||
for ix := 0; ix < n*incX; ix += incX {
|
||||
val := x[ix]
|
||||
if val == 0 {
|
||||
continue
|
||||
}
|
||||
absxi := math.Abs(val)
|
||||
if math.IsNaN(absxi) {
|
||||
return math.NaN()
|
||||
}
|
||||
if scale < absxi {
|
||||
sumSquares = 1 + sumSquares*(scale/absxi)*(scale/absxi)
|
||||
scale = absxi
|
||||
} else {
|
||||
sumSquares = sumSquares + (absxi/scale)*(absxi/scale)
|
||||
}
|
||||
}
|
||||
if math.IsInf(scale, 1) {
|
||||
return math.Inf(1)
|
||||
}
|
||||
return scale * math.Sqrt(sumSquares)
|
||||
}
|
||||
|
||||
// Dasum computes the sum of the absolute values of the elements of x.
|
||||
// \sum_i |x[i]|
|
||||
// Dasum returns 0 if incX is negative.
|
||||
func (Implementation) Dasum(n int, x []float64, incX int) float64 {
|
||||
var sum float64
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
return 0
|
||||
}
|
||||
if len(x) <= (n-1)*incX {
|
||||
panic(shortX)
|
||||
}
|
||||
if incX == 1 {
|
||||
x = x[:n]
|
||||
for _, v := range x {
|
||||
sum += math.Abs(v)
|
||||
}
|
||||
return sum
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
sum += math.Abs(x[i*incX])
|
||||
}
|
||||
return sum
|
||||
}
|
||||
|
||||
// Idamax returns the index of an element of x with the largest absolute value.
|
||||
// If there are multiple such indices the earliest is returned.
|
||||
// Idamax returns -1 if n == 0.
|
||||
func (Implementation) Idamax(n int, x []float64, incX int) int {
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
return -1
|
||||
}
|
||||
if len(x) <= (n-1)*incX {
|
||||
panic(shortX)
|
||||
}
|
||||
if n < 2 {
|
||||
if n == 1 {
|
||||
return 0
|
||||
}
|
||||
if n == 0 {
|
||||
return -1 // Netlib returns invalid index when n == 0.
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
idx := 0
|
||||
max := math.Abs(x[0])
|
||||
if incX == 1 {
|
||||
for i, v := range x[:n] {
|
||||
absV := math.Abs(v)
|
||||
if absV > max {
|
||||
max = absV
|
||||
idx = i
|
||||
}
|
||||
}
|
||||
return idx
|
||||
}
|
||||
ix := incX
|
||||
for i := 1; i < n; i++ {
|
||||
v := x[ix]
|
||||
absV := math.Abs(v)
|
||||
if absV > max {
|
||||
max = absV
|
||||
idx = i
|
||||
}
|
||||
ix += incX
|
||||
}
|
||||
return idx
|
||||
}
|
||||
|
||||
// Dswap exchanges the elements of two vectors.
|
||||
// x[i], y[i] = y[i], x[i] for all i
|
||||
func (Implementation) Dswap(n int, x []float64, incX int, y []float64, incY int) {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
|
||||
panic(shortY)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
x = x[:n]
|
||||
for i, v := range x {
|
||||
x[i], y[i] = y[i], v
|
||||
}
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
x[ix], y[iy] = y[iy], x[ix]
|
||||
ix += incX
|
||||
iy += incY
|
||||
}
|
||||
}
|
||||
|
||||
// Dcopy copies the elements of x into the elements of y.
|
||||
// y[i] = x[i] for all i
|
||||
func (Implementation) Dcopy(n int, x []float64, incX int, y []float64, incY int) {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
|
||||
panic(shortY)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
copy(y[:n], x[:n])
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
y[iy] = x[ix]
|
||||
ix += incX
|
||||
iy += incY
|
||||
}
|
||||
}
|
||||
|
||||
// Daxpy adds alpha times x to y
|
||||
// y[i] += alpha * x[i] for all i
|
||||
func (Implementation) Daxpy(n int, alpha float64, x []float64, incX int, y []float64, incY int) {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
|
||||
panic(shortY)
|
||||
}
|
||||
if alpha == 0 {
|
||||
return
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
f64.AxpyUnitary(alpha, x[:n], y[:n])
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
f64.AxpyInc(alpha, x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
|
||||
}
|
||||
|
||||
// Drotg computes the plane rotation
|
||||
// _ _ _ _ _ _
|
||||
// | c s | | a | | r |
|
||||
// | -s c | * | b | = | 0 |
|
||||
// ‾ ‾ ‾ ‾ ‾ ‾
|
||||
// where
|
||||
// r = ±√(a^2 + b^2)
|
||||
// c = a/r, the cosine of the plane rotation
|
||||
// s = b/r, the sine of the plane rotation
|
||||
//
|
||||
// NOTE: There is a discrepancy between the reference implementation and the BLAS
|
||||
// technical manual regarding the sign for r when a or b are zero.
|
||||
// Drotg agrees with the definition in the manual and other
|
||||
// common BLAS implementations.
|
||||
func (Implementation) Drotg(a, b float64) (c, s, r, z float64) {
|
||||
if b == 0 && a == 0 {
|
||||
return 1, 0, a, 0
|
||||
}
|
||||
absA := math.Abs(a)
|
||||
absB := math.Abs(b)
|
||||
aGTb := absA > absB
|
||||
r = math.Hypot(a, b)
|
||||
if aGTb {
|
||||
r = math.Copysign(r, a)
|
||||
} else {
|
||||
r = math.Copysign(r, b)
|
||||
}
|
||||
c = a / r
|
||||
s = b / r
|
||||
if aGTb {
|
||||
z = s
|
||||
} else if c != 0 { // r == 0 case handled above
|
||||
z = 1 / c
|
||||
} else {
|
||||
z = 1
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Drotmg computes the modified Givens rotation. See
|
||||
// http://www.netlib.org/lapack/explore-html/df/deb/drotmg_8f.html
|
||||
// for more details.
|
||||
func (Implementation) Drotmg(d1, d2, x1, y1 float64) (p blas.DrotmParams, rd1, rd2, rx1 float64) {
|
||||
// The implementation of Drotmg used here is taken from Hopkins 1997
|
||||
// Appendix A: https://doi.org/10.1145/289251.289253
|
||||
// with the exception of the gam constants below.
|
||||
|
||||
const (
|
||||
gam = 4096.0
|
||||
gamsq = gam * gam
|
||||
rgamsq = 1.0 / gamsq
|
||||
)
|
||||
|
||||
if d1 < 0 {
|
||||
p.Flag = blas.Rescaling // Error state.
|
||||
return p, 0, 0, 0
|
||||
}
|
||||
|
||||
if d2 == 0 || y1 == 0 {
|
||||
p.Flag = blas.Identity
|
||||
return p, d1, d2, x1
|
||||
}
|
||||
|
||||
var h11, h12, h21, h22 float64
|
||||
if (d1 == 0 || x1 == 0) && d2 > 0 {
|
||||
p.Flag = blas.Diagonal
|
||||
h12 = 1
|
||||
h21 = -1
|
||||
x1 = y1
|
||||
d1, d2 = d2, d1
|
||||
} else {
|
||||
p2 := d2 * y1
|
||||
p1 := d1 * x1
|
||||
q2 := p2 * y1
|
||||
q1 := p1 * x1
|
||||
if math.Abs(q1) > math.Abs(q2) {
|
||||
p.Flag = blas.OffDiagonal
|
||||
h11 = 1
|
||||
h22 = 1
|
||||
h21 = -y1 / x1
|
||||
h12 = p2 / p1
|
||||
u := 1 - h12*h21
|
||||
if u <= 0 {
|
||||
p.Flag = blas.Rescaling // Error state.
|
||||
return p, 0, 0, 0
|
||||
}
|
||||
|
||||
d1 /= u
|
||||
d2 /= u
|
||||
x1 *= u
|
||||
} else {
|
||||
if q2 < 0 {
|
||||
p.Flag = blas.Rescaling // Error state.
|
||||
return p, 0, 0, 0
|
||||
}
|
||||
|
||||
p.Flag = blas.Diagonal
|
||||
h21 = -1
|
||||
h12 = 1
|
||||
h11 = p1 / p2
|
||||
h22 = x1 / y1
|
||||
u := 1 + h11*h22
|
||||
d1, d2 = d2/u, d1/u
|
||||
x1 = y1 * u
|
||||
}
|
||||
}
|
||||
|
||||
for d1 <= rgamsq && d1 != 0 {
|
||||
p.Flag = blas.Rescaling
|
||||
d1 = (d1 * gam) * gam
|
||||
x1 /= gam
|
||||
h11 /= gam
|
||||
h12 /= gam
|
||||
}
|
||||
for d1 > gamsq {
|
||||
p.Flag = blas.Rescaling
|
||||
d1 = (d1 / gam) / gam
|
||||
x1 *= gam
|
||||
h11 *= gam
|
||||
h12 *= gam
|
||||
}
|
||||
|
||||
for math.Abs(d2) <= rgamsq && d2 != 0 {
|
||||
p.Flag = blas.Rescaling
|
||||
d2 = (d2 * gam) * gam
|
||||
h21 /= gam
|
||||
h22 /= gam
|
||||
}
|
||||
for math.Abs(d2) > gamsq {
|
||||
p.Flag = blas.Rescaling
|
||||
d2 = (d2 / gam) / gam
|
||||
h21 *= gam
|
||||
h22 *= gam
|
||||
}
|
||||
|
||||
switch p.Flag {
|
||||
case blas.Diagonal:
|
||||
p.H = [4]float64{0: h11, 3: h22}
|
||||
case blas.OffDiagonal:
|
||||
p.H = [4]float64{1: h21, 2: h12}
|
||||
case blas.Rescaling:
|
||||
p.H = [4]float64{h11, h21, h12, h22}
|
||||
default:
|
||||
panic(badFlag)
|
||||
}
|
||||
|
||||
return p, d1, d2, x1
|
||||
}
|
||||
|
||||
// Drot applies a plane transformation.
|
||||
// x[i] = c * x[i] + s * y[i]
|
||||
// y[i] = c * y[i] - s * x[i]
|
||||
func (Implementation) Drot(n int, x []float64, incX int, y []float64, incY int, c float64, s float64) {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
|
||||
panic(shortY)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
x = x[:n]
|
||||
for i, vx := range x {
|
||||
vy := y[i]
|
||||
x[i], y[i] = c*vx+s*vy, c*vy-s*vx
|
||||
}
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
vx := x[ix]
|
||||
vy := y[iy]
|
||||
x[ix], y[iy] = c*vx+s*vy, c*vy-s*vx
|
||||
ix += incX
|
||||
iy += incY
|
||||
}
|
||||
}
|
||||
|
||||
// Drotm applies the modified Givens rotation to the 2×n matrix.
|
||||
func (Implementation) Drotm(n int, x []float64, incX int, y []float64, incY int, p blas.DrotmParams) {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n <= 0 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
|
||||
panic(shortX)
|
||||
}
|
||||
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
|
||||
panic(shortY)
|
||||
}
|
||||
|
||||
if p.Flag == blas.Identity {
|
||||
return
|
||||
}
|
||||
|
||||
switch p.Flag {
|
||||
case blas.Rescaling:
|
||||
h11 := p.H[0]
|
||||
h12 := p.H[2]
|
||||
h21 := p.H[1]
|
||||
h22 := p.H[3]
|
||||
if incX == 1 && incY == 1 {
|
||||
x = x[:n]
|
||||
for i, vx := range x {
|
||||
vy := y[i]
|
||||
x[i], y[i] = vx*h11+vy*h12, vx*h21+vy*h22
|
||||
}
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
vx := x[ix]
|
||||
vy := y[iy]
|
||||
x[ix], y[iy] = vx*h11+vy*h12, vx*h21+vy*h22
|
||||
ix += incX
|
||||
iy += incY
|
||||
}
|
||||
case blas.OffDiagonal:
|
||||
h12 := p.H[2]
|
||||
h21 := p.H[1]
|
||||
if incX == 1 && incY == 1 {
|
||||
x = x[:n]
|
||||
for i, vx := range x {
|
||||
vy := y[i]
|
||||
x[i], y[i] = vx+vy*h12, vx*h21+vy
|
||||
}
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
vx := x[ix]
|
||||
vy := y[iy]
|
||||
x[ix], y[iy] = vx+vy*h12, vx*h21+vy
|
||||
ix += incX
|
||||
iy += incY
|
||||
}
|
||||
case blas.Diagonal:
|
||||
h11 := p.H[0]
|
||||
h22 := p.H[3]
|
||||
if incX == 1 && incY == 1 {
|
||||
x = x[:n]
|
||||
for i, vx := range x {
|
||||
vy := y[i]
|
||||
x[i], y[i] = vx*h11+vy, -vx+vy*h22
|
||||
}
|
||||
return
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
vx := x[ix]
|
||||
vy := y[iy]
|
||||
x[ix], y[iy] = vx*h11+vy, -vx+vy*h22
|
||||
ix += incX
|
||||
iy += incY
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Dscal scales x by alpha.
|
||||
// x[i] *= alpha
|
||||
// Dscal has no effect if incX < 0.
|
||||
func (Implementation) Dscal(n int, alpha float64, x []float64, incX int) {
|
||||
if incX < 1 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
return
|
||||
}
|
||||
if n < 1 {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if (n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
if alpha == 0 {
|
||||
if incX == 1 {
|
||||
x = x[:n]
|
||||
for i := range x {
|
||||
x[i] = 0
|
||||
}
|
||||
return
|
||||
}
|
||||
for ix := 0; ix < n*incX; ix += incX {
|
||||
x[ix] = 0
|
||||
}
|
||||
return
|
||||
}
|
||||
if incX == 1 {
|
||||
f64.ScalUnitary(alpha, x[:n])
|
||||
return
|
||||
}
|
||||
f64.ScalInc(alpha, x, uintptr(n), uintptr(incX))
|
||||
}
|
49
vendor/gonum.org/v1/gonum/blas/gonum/level1float64_ddot.go
generated
vendored
Normal file
49
vendor/gonum.org/v1/gonum/blas/gonum/level1float64_ddot.go
generated
vendored
Normal file
@@ -0,0 +1,49 @@
|
||||
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package gonum
|
||||
|
||||
import (
|
||||
"gonum.org/v1/gonum/internal/asm/f64"
|
||||
)
|
||||
|
||||
// Ddot computes the dot product of the two vectors
|
||||
// \sum_i x[i]*y[i]
|
||||
func (Implementation) Ddot(n int, x []float64, incX int, y []float64, incY int) float64 {
|
||||
if incX == 0 {
|
||||
panic(zeroIncX)
|
||||
}
|
||||
if incY == 0 {
|
||||
panic(zeroIncY)
|
||||
}
|
||||
if n <= 0 {
|
||||
if n == 0 {
|
||||
return 0
|
||||
}
|
||||
panic(nLT0)
|
||||
}
|
||||
if incX == 1 && incY == 1 {
|
||||
if len(x) < n {
|
||||
panic(shortX)
|
||||
}
|
||||
if len(y) < n {
|
||||
panic(shortY)
|
||||
}
|
||||
return f64.DotUnitary(x[:n], y[:n])
|
||||
}
|
||||
var ix, iy int
|
||||
if incX < 0 {
|
||||
ix = (-n + 1) * incX
|
||||
}
|
||||
if incY < 0 {
|
||||
iy = (-n + 1) * incY
|
||||
}
|
||||
if ix >= len(x) || ix+(n-1)*incX >= len(x) {
|
||||
panic(shortX)
|
||||
}
|
||||
if iy >= len(y) || iy+(n-1)*incY >= len(y) {
|
||||
panic(shortY)
|
||||
}
|
||||
return f64.DotInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
|
||||
}
|
2906
vendor/gonum.org/v1/gonum/blas/gonum/level2cmplx128.go
generated
vendored
Normal file
2906
vendor/gonum.org/v1/gonum/blas/gonum/level2cmplx128.go
generated
vendored
Normal file
File diff suppressed because it is too large
Load Diff
2942
vendor/gonum.org/v1/gonum/blas/gonum/level2cmplx64.go
generated
vendored
Normal file
2942
vendor/gonum.org/v1/gonum/blas/gonum/level2cmplx64.go
generated
vendored
Normal file
File diff suppressed because it is too large
Load Diff
2296
vendor/gonum.org/v1/gonum/blas/gonum/level2float32.go
generated
vendored
Normal file
2296
vendor/gonum.org/v1/gonum/blas/gonum/level2float32.go
generated
vendored
Normal file
File diff suppressed because it is too large
Load Diff
2264
vendor/gonum.org/v1/gonum/blas/gonum/level2float64.go
generated
vendored
Normal file
2264
vendor/gonum.org/v1/gonum/blas/gonum/level2float64.go
generated
vendored
Normal file
File diff suppressed because it is too large
Load Diff
1715
vendor/gonum.org/v1/gonum/blas/gonum/level3cmplx128.go
generated
vendored
Normal file
1715
vendor/gonum.org/v1/gonum/blas/gonum/level3cmplx128.go
generated
vendored
Normal file
File diff suppressed because it is too large
Load Diff
1735
vendor/gonum.org/v1/gonum/blas/gonum/level3cmplx64.go
generated
vendored
Normal file
1735
vendor/gonum.org/v1/gonum/blas/gonum/level3cmplx64.go
generated
vendored
Normal file
File diff suppressed because it is too large
Load Diff
876
vendor/gonum.org/v1/gonum/blas/gonum/level3float32.go
generated
vendored
Normal file
876
vendor/gonum.org/v1/gonum/blas/gonum/level3float32.go
generated
vendored
Normal file
@@ -0,0 +1,876 @@
|
||||
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
|
||||
|
||||
// Copyright ©2014 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package gonum
|
||||
|
||||
import (
|
||||
"gonum.org/v1/gonum/blas"
|
||||
"gonum.org/v1/gonum/internal/asm/f32"
|
||||
)
|
||||
|
||||
var _ blas.Float32Level3 = Implementation{}
|
||||
|
||||
// Strsm solves one of the matrix equations
|
||||
// A * X = alpha * B if tA == blas.NoTrans and side == blas.Left
|
||||
// A^T * X = alpha * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Left
|
||||
// X * A = alpha * B if tA == blas.NoTrans and side == blas.Right
|
||||
// X * A^T = alpha * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Right
|
||||
// where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and alpha is a
|
||||
// scalar.
|
||||
//
|
||||
// At entry to the function, X contains the values of B, and the result is
|
||||
// stored in-place into X.
|
||||
//
|
||||
// No check is made that A is invertible.
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Strsm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int) {
|
||||
if s != blas.Left && s != blas.Right {
|
||||
panic(badSide)
|
||||
}
|
||||
if ul != blas.Lower && ul != blas.Upper {
|
||||
panic(badUplo)
|
||||
}
|
||||
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
|
||||
panic(badTranspose)
|
||||
}
|
||||
if d != blas.NonUnit && d != blas.Unit {
|
||||
panic(badDiag)
|
||||
}
|
||||
if m < 0 {
|
||||
panic(mLT0)
|
||||
}
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
k := n
|
||||
if s == blas.Left {
|
||||
k = m
|
||||
}
|
||||
if lda < max(1, k) {
|
||||
panic(badLdA)
|
||||
}
|
||||
if ldb < max(1, n) {
|
||||
panic(badLdB)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if m == 0 || n == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// For zero matrix size the following slice length checks are trivially satisfied.
|
||||
if len(a) < lda*(k-1)+k {
|
||||
panic(shortA)
|
||||
}
|
||||
if len(b) < ldb*(m-1)+n {
|
||||
panic(shortB)
|
||||
}
|
||||
|
||||
if alpha == 0 {
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
for j := range btmp {
|
||||
btmp[j] = 0
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
nonUnit := d == blas.NonUnit
|
||||
if s == blas.Left {
|
||||
if tA == blas.NoTrans {
|
||||
if ul == blas.Upper {
|
||||
for i := m - 1; i >= 0; i-- {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
if alpha != 1 {
|
||||
f32.ScalUnitary(alpha, btmp)
|
||||
}
|
||||
for ka, va := range a[i*lda+i+1 : i*lda+m] {
|
||||
if va != 0 {
|
||||
k := ka + i + 1
|
||||
f32.AxpyUnitary(-va, b[k*ldb:k*ldb+n], btmp)
|
||||
}
|
||||
}
|
||||
if nonUnit {
|
||||
tmp := 1 / a[i*lda+i]
|
||||
f32.ScalUnitary(tmp, btmp)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
if alpha != 1 {
|
||||
f32.ScalUnitary(alpha, btmp)
|
||||
}
|
||||
for k, va := range a[i*lda : i*lda+i] {
|
||||
if va != 0 {
|
||||
f32.AxpyUnitary(-va, b[k*ldb:k*ldb+n], btmp)
|
||||
}
|
||||
}
|
||||
if nonUnit {
|
||||
tmp := 1 / a[i*lda+i]
|
||||
f32.ScalUnitary(tmp, btmp)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
// Cases where a is transposed
|
||||
if ul == blas.Upper {
|
||||
for k := 0; k < m; k++ {
|
||||
btmpk := b[k*ldb : k*ldb+n]
|
||||
if nonUnit {
|
||||
tmp := 1 / a[k*lda+k]
|
||||
f32.ScalUnitary(tmp, btmpk)
|
||||
}
|
||||
for ia, va := range a[k*lda+k+1 : k*lda+m] {
|
||||
if va != 0 {
|
||||
i := ia + k + 1
|
||||
f32.AxpyUnitary(-va, btmpk, b[i*ldb:i*ldb+n])
|
||||
}
|
||||
}
|
||||
if alpha != 1 {
|
||||
f32.ScalUnitary(alpha, btmpk)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for k := m - 1; k >= 0; k-- {
|
||||
btmpk := b[k*ldb : k*ldb+n]
|
||||
if nonUnit {
|
||||
tmp := 1 / a[k*lda+k]
|
||||
f32.ScalUnitary(tmp, btmpk)
|
||||
}
|
||||
for i, va := range a[k*lda : k*lda+k] {
|
||||
if va != 0 {
|
||||
f32.AxpyUnitary(-va, btmpk, b[i*ldb:i*ldb+n])
|
||||
}
|
||||
}
|
||||
if alpha != 1 {
|
||||
f32.ScalUnitary(alpha, btmpk)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
// Cases where a is to the right of X.
|
||||
if tA == blas.NoTrans {
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
if alpha != 1 {
|
||||
f32.ScalUnitary(alpha, btmp)
|
||||
}
|
||||
for k, vb := range btmp {
|
||||
if vb == 0 {
|
||||
continue
|
||||
}
|
||||
if nonUnit {
|
||||
btmp[k] /= a[k*lda+k]
|
||||
}
|
||||
f32.AxpyUnitary(-btmp[k], a[k*lda+k+1:k*lda+n], btmp[k+1:n])
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
if alpha != 1 {
|
||||
f32.ScalUnitary(alpha, btmp)
|
||||
}
|
||||
for k := n - 1; k >= 0; k-- {
|
||||
if btmp[k] == 0 {
|
||||
continue
|
||||
}
|
||||
if nonUnit {
|
||||
btmp[k] /= a[k*lda+k]
|
||||
}
|
||||
f32.AxpyUnitary(-btmp[k], a[k*lda:k*lda+k], btmp[:k])
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
// Cases where a is transposed.
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
for j := n - 1; j >= 0; j-- {
|
||||
tmp := alpha*btmp[j] - f32.DotUnitary(a[j*lda+j+1:j*lda+n], btmp[j+1:])
|
||||
if nonUnit {
|
||||
tmp /= a[j*lda+j]
|
||||
}
|
||||
btmp[j] = tmp
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
for j := 0; j < n; j++ {
|
||||
tmp := alpha*btmp[j] - f32.DotUnitary(a[j*lda:j*lda+j], btmp[:j])
|
||||
if nonUnit {
|
||||
tmp /= a[j*lda+j]
|
||||
}
|
||||
btmp[j] = tmp
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Ssymm performs one of the matrix-matrix operations
|
||||
// C = alpha * A * B + beta * C if side == blas.Left
|
||||
// C = alpha * B * A + beta * C if side == blas.Right
|
||||
// where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and alpha
|
||||
// is a scalar.
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Ssymm(s blas.Side, ul blas.Uplo, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int) {
|
||||
if s != blas.Right && s != blas.Left {
|
||||
panic(badSide)
|
||||
}
|
||||
if ul != blas.Lower && ul != blas.Upper {
|
||||
panic(badUplo)
|
||||
}
|
||||
if m < 0 {
|
||||
panic(mLT0)
|
||||
}
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
k := n
|
||||
if s == blas.Left {
|
||||
k = m
|
||||
}
|
||||
if lda < max(1, k) {
|
||||
panic(badLdA)
|
||||
}
|
||||
if ldb < max(1, n) {
|
||||
panic(badLdB)
|
||||
}
|
||||
if ldc < max(1, n) {
|
||||
panic(badLdC)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if m == 0 || n == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// For zero matrix size the following slice length checks are trivially satisfied.
|
||||
if len(a) < lda*(k-1)+k {
|
||||
panic(shortA)
|
||||
}
|
||||
if len(b) < ldb*(m-1)+n {
|
||||
panic(shortB)
|
||||
}
|
||||
if len(c) < ldc*(m-1)+n {
|
||||
panic(shortC)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if alpha == 0 && beta == 1 {
|
||||
return
|
||||
}
|
||||
|
||||
if alpha == 0 {
|
||||
if beta == 0 {
|
||||
for i := 0; i < m; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for j := range ctmp {
|
||||
ctmp[j] = 0
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < m; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for j := 0; j < n; j++ {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
isUpper := ul == blas.Upper
|
||||
if s == blas.Left {
|
||||
for i := 0; i < m; i++ {
|
||||
atmp := alpha * a[i*lda+i]
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for j, v := range btmp {
|
||||
ctmp[j] *= beta
|
||||
ctmp[j] += atmp * v
|
||||
}
|
||||
|
||||
for k := 0; k < i; k++ {
|
||||
var atmp float32
|
||||
if isUpper {
|
||||
atmp = a[k*lda+i]
|
||||
} else {
|
||||
atmp = a[i*lda+k]
|
||||
}
|
||||
atmp *= alpha
|
||||
f32.AxpyUnitary(atmp, b[k*ldb:k*ldb+n], ctmp)
|
||||
}
|
||||
for k := i + 1; k < m; k++ {
|
||||
var atmp float32
|
||||
if isUpper {
|
||||
atmp = a[i*lda+k]
|
||||
} else {
|
||||
atmp = a[k*lda+i]
|
||||
}
|
||||
atmp *= alpha
|
||||
f32.AxpyUnitary(atmp, b[k*ldb:k*ldb+n], ctmp)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
if isUpper {
|
||||
for i := 0; i < m; i++ {
|
||||
for j := n - 1; j >= 0; j-- {
|
||||
tmp := alpha * b[i*ldb+j]
|
||||
var tmp2 float32
|
||||
atmp := a[j*lda+j+1 : j*lda+n]
|
||||
btmp := b[i*ldb+j+1 : i*ldb+n]
|
||||
ctmp := c[i*ldc+j+1 : i*ldc+n]
|
||||
for k, v := range atmp {
|
||||
ctmp[k] += tmp * v
|
||||
tmp2 += btmp[k] * v
|
||||
}
|
||||
c[i*ldc+j] *= beta
|
||||
c[i*ldc+j] += tmp*a[j*lda+j] + alpha*tmp2
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < m; i++ {
|
||||
for j := 0; j < n; j++ {
|
||||
tmp := alpha * b[i*ldb+j]
|
||||
var tmp2 float32
|
||||
atmp := a[j*lda : j*lda+j]
|
||||
btmp := b[i*ldb : i*ldb+j]
|
||||
ctmp := c[i*ldc : i*ldc+j]
|
||||
for k, v := range atmp {
|
||||
ctmp[k] += tmp * v
|
||||
tmp2 += btmp[k] * v
|
||||
}
|
||||
c[i*ldc+j] *= beta
|
||||
c[i*ldc+j] += tmp*a[j*lda+j] + alpha*tmp2
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Ssyrk performs one of the symmetric rank-k operations
|
||||
// C = alpha * A * A^T + beta * C if tA == blas.NoTrans
|
||||
// C = alpha * A^T * A + beta * C if tA == blas.Trans or tA == blas.ConjTrans
|
||||
// where A is an n×k or k×n matrix, C is an n×n symmetric matrix, and alpha and
|
||||
// beta are scalars.
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Ssyrk(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float32, a []float32, lda int, beta float32, c []float32, ldc int) {
|
||||
if ul != blas.Lower && ul != blas.Upper {
|
||||
panic(badUplo)
|
||||
}
|
||||
if tA != blas.Trans && tA != blas.NoTrans && tA != blas.ConjTrans {
|
||||
panic(badTranspose)
|
||||
}
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
if k < 0 {
|
||||
panic(kLT0)
|
||||
}
|
||||
row, col := k, n
|
||||
if tA == blas.NoTrans {
|
||||
row, col = n, k
|
||||
}
|
||||
if lda < max(1, col) {
|
||||
panic(badLdA)
|
||||
}
|
||||
if ldc < max(1, n) {
|
||||
panic(badLdC)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// For zero matrix size the following slice length checks are trivially satisfied.
|
||||
if len(a) < lda*(row-1)+col {
|
||||
panic(shortA)
|
||||
}
|
||||
if len(c) < ldc*(n-1)+n {
|
||||
panic(shortC)
|
||||
}
|
||||
|
||||
if alpha == 0 {
|
||||
if beta == 0 {
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc+i : i*ldc+n]
|
||||
for j := range ctmp {
|
||||
ctmp[j] = 0
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+i+1]
|
||||
for j := range ctmp {
|
||||
ctmp[j] = 0
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc+i : i*ldc+n]
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+i+1]
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
if tA == blas.NoTrans {
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc+i : i*ldc+n]
|
||||
atmp := a[i*lda : i*lda+k]
|
||||
if beta == 0 {
|
||||
for jc := range ctmp {
|
||||
j := jc + i
|
||||
ctmp[jc] = alpha * f32.DotUnitary(atmp, a[j*lda:j*lda+k])
|
||||
}
|
||||
} else {
|
||||
for jc, vc := range ctmp {
|
||||
j := jc + i
|
||||
ctmp[jc] = vc*beta + alpha*f32.DotUnitary(atmp, a[j*lda:j*lda+k])
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+i+1]
|
||||
atmp := a[i*lda : i*lda+k]
|
||||
if beta == 0 {
|
||||
for j := range ctmp {
|
||||
ctmp[j] = alpha * f32.DotUnitary(a[j*lda:j*lda+k], atmp)
|
||||
}
|
||||
} else {
|
||||
for j, vc := range ctmp {
|
||||
ctmp[j] = vc*beta + alpha*f32.DotUnitary(a[j*lda:j*lda+k], atmp)
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
// Cases where a is transposed.
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc+i : i*ldc+n]
|
||||
if beta == 0 {
|
||||
for j := range ctmp {
|
||||
ctmp[j] = 0
|
||||
}
|
||||
} else if beta != 1 {
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
for l := 0; l < k; l++ {
|
||||
tmp := alpha * a[l*lda+i]
|
||||
if tmp != 0 {
|
||||
f32.AxpyUnitary(tmp, a[l*lda+i:l*lda+n], ctmp)
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+i+1]
|
||||
if beta != 1 {
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
for l := 0; l < k; l++ {
|
||||
tmp := alpha * a[l*lda+i]
|
||||
if tmp != 0 {
|
||||
f32.AxpyUnitary(tmp, a[l*lda:l*lda+i+1], ctmp)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Ssyr2k performs one of the symmetric rank 2k operations
|
||||
// C = alpha * A * B^T + alpha * B * A^T + beta * C if tA == blas.NoTrans
|
||||
// C = alpha * A^T * B + alpha * B^T * A + beta * C if tA == blas.Trans or tA == blas.ConjTrans
|
||||
// where A and B are n×k or k×n matrices, C is an n×n symmetric matrix, and
|
||||
// alpha and beta are scalars.
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Ssyr2k(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int) {
|
||||
if ul != blas.Lower && ul != blas.Upper {
|
||||
panic(badUplo)
|
||||
}
|
||||
if tA != blas.Trans && tA != blas.NoTrans && tA != blas.ConjTrans {
|
||||
panic(badTranspose)
|
||||
}
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
if k < 0 {
|
||||
panic(kLT0)
|
||||
}
|
||||
row, col := k, n
|
||||
if tA == blas.NoTrans {
|
||||
row, col = n, k
|
||||
}
|
||||
if lda < max(1, col) {
|
||||
panic(badLdA)
|
||||
}
|
||||
if ldb < max(1, col) {
|
||||
panic(badLdB)
|
||||
}
|
||||
if ldc < max(1, n) {
|
||||
panic(badLdC)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// For zero matrix size the following slice length checks are trivially satisfied.
|
||||
if len(a) < lda*(row-1)+col {
|
||||
panic(shortA)
|
||||
}
|
||||
if len(b) < ldb*(row-1)+col {
|
||||
panic(shortB)
|
||||
}
|
||||
if len(c) < ldc*(n-1)+n {
|
||||
panic(shortC)
|
||||
}
|
||||
|
||||
if alpha == 0 {
|
||||
if beta == 0 {
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc+i : i*ldc+n]
|
||||
for j := range ctmp {
|
||||
ctmp[j] = 0
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+i+1]
|
||||
for j := range ctmp {
|
||||
ctmp[j] = 0
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc+i : i*ldc+n]
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+i+1]
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
if tA == blas.NoTrans {
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < n; i++ {
|
||||
atmp := a[i*lda : i*lda+k]
|
||||
btmp := b[i*ldb : i*ldb+k]
|
||||
ctmp := c[i*ldc+i : i*ldc+n]
|
||||
for jc := range ctmp {
|
||||
j := i + jc
|
||||
var tmp1, tmp2 float32
|
||||
binner := b[j*ldb : j*ldb+k]
|
||||
for l, v := range a[j*lda : j*lda+k] {
|
||||
tmp1 += v * btmp[l]
|
||||
tmp2 += atmp[l] * binner[l]
|
||||
}
|
||||
ctmp[jc] *= beta
|
||||
ctmp[jc] += alpha * (tmp1 + tmp2)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
atmp := a[i*lda : i*lda+k]
|
||||
btmp := b[i*ldb : i*ldb+k]
|
||||
ctmp := c[i*ldc : i*ldc+i+1]
|
||||
for j := 0; j <= i; j++ {
|
||||
var tmp1, tmp2 float32
|
||||
binner := b[j*ldb : j*ldb+k]
|
||||
for l, v := range a[j*lda : j*lda+k] {
|
||||
tmp1 += v * btmp[l]
|
||||
tmp2 += atmp[l] * binner[l]
|
||||
}
|
||||
ctmp[j] *= beta
|
||||
ctmp[j] += alpha * (tmp1 + tmp2)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc+i : i*ldc+n]
|
||||
if beta != 1 {
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
for l := 0; l < k; l++ {
|
||||
tmp1 := alpha * b[l*ldb+i]
|
||||
tmp2 := alpha * a[l*lda+i]
|
||||
btmp := b[l*ldb+i : l*ldb+n]
|
||||
if tmp1 != 0 || tmp2 != 0 {
|
||||
for j, v := range a[l*lda+i : l*lda+n] {
|
||||
ctmp[j] += v*tmp1 + btmp[j]*tmp2
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+i+1]
|
||||
if beta != 1 {
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
for l := 0; l < k; l++ {
|
||||
tmp1 := alpha * b[l*ldb+i]
|
||||
tmp2 := alpha * a[l*lda+i]
|
||||
btmp := b[l*ldb : l*ldb+i+1]
|
||||
if tmp1 != 0 || tmp2 != 0 {
|
||||
for j, v := range a[l*lda : l*lda+i+1] {
|
||||
ctmp[j] += v*tmp1 + btmp[j]*tmp2
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Strmm performs one of the matrix-matrix operations
|
||||
// B = alpha * A * B if tA == blas.NoTrans and side == blas.Left
|
||||
// B = alpha * A^T * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Left
|
||||
// B = alpha * B * A if tA == blas.NoTrans and side == blas.Right
|
||||
// B = alpha * B * A^T if tA == blas.Trans or blas.ConjTrans, and side == blas.Right
|
||||
// where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is a scalar.
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Strmm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int) {
|
||||
if s != blas.Left && s != blas.Right {
|
||||
panic(badSide)
|
||||
}
|
||||
if ul != blas.Lower && ul != blas.Upper {
|
||||
panic(badUplo)
|
||||
}
|
||||
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
|
||||
panic(badTranspose)
|
||||
}
|
||||
if d != blas.NonUnit && d != blas.Unit {
|
||||
panic(badDiag)
|
||||
}
|
||||
if m < 0 {
|
||||
panic(mLT0)
|
||||
}
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
k := n
|
||||
if s == blas.Left {
|
||||
k = m
|
||||
}
|
||||
if lda < max(1, k) {
|
||||
panic(badLdA)
|
||||
}
|
||||
if ldb < max(1, n) {
|
||||
panic(badLdB)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if m == 0 || n == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// For zero matrix size the following slice length checks are trivially satisfied.
|
||||
if len(a) < lda*(k-1)+k {
|
||||
panic(shortA)
|
||||
}
|
||||
if len(b) < ldb*(m-1)+n {
|
||||
panic(shortB)
|
||||
}
|
||||
|
||||
if alpha == 0 {
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
for j := range btmp {
|
||||
btmp[j] = 0
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
nonUnit := d == blas.NonUnit
|
||||
if s == blas.Left {
|
||||
if tA == blas.NoTrans {
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < m; i++ {
|
||||
tmp := alpha
|
||||
if nonUnit {
|
||||
tmp *= a[i*lda+i]
|
||||
}
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
f32.ScalUnitary(tmp, btmp)
|
||||
for ka, va := range a[i*lda+i+1 : i*lda+m] {
|
||||
k := ka + i + 1
|
||||
if va != 0 {
|
||||
f32.AxpyUnitary(alpha*va, b[k*ldb:k*ldb+n], btmp)
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := m - 1; i >= 0; i-- {
|
||||
tmp := alpha
|
||||
if nonUnit {
|
||||
tmp *= a[i*lda+i]
|
||||
}
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
f32.ScalUnitary(tmp, btmp)
|
||||
for k, va := range a[i*lda : i*lda+i] {
|
||||
if va != 0 {
|
||||
f32.AxpyUnitary(alpha*va, b[k*ldb:k*ldb+n], btmp)
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
// Cases where a is transposed.
|
||||
if ul == blas.Upper {
|
||||
for k := m - 1; k >= 0; k-- {
|
||||
btmpk := b[k*ldb : k*ldb+n]
|
||||
for ia, va := range a[k*lda+k+1 : k*lda+m] {
|
||||
i := ia + k + 1
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
if va != 0 {
|
||||
f32.AxpyUnitary(alpha*va, btmpk, btmp)
|
||||
}
|
||||
}
|
||||
tmp := alpha
|
||||
if nonUnit {
|
||||
tmp *= a[k*lda+k]
|
||||
}
|
||||
if tmp != 1 {
|
||||
f32.ScalUnitary(tmp, btmpk)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for k := 0; k < m; k++ {
|
||||
btmpk := b[k*ldb : k*ldb+n]
|
||||
for i, va := range a[k*lda : k*lda+k] {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
if va != 0 {
|
||||
f32.AxpyUnitary(alpha*va, btmpk, btmp)
|
||||
}
|
||||
}
|
||||
tmp := alpha
|
||||
if nonUnit {
|
||||
tmp *= a[k*lda+k]
|
||||
}
|
||||
if tmp != 1 {
|
||||
f32.ScalUnitary(tmp, btmpk)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
// Cases where a is on the right
|
||||
if tA == blas.NoTrans {
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
for k := n - 1; k >= 0; k-- {
|
||||
tmp := alpha * btmp[k]
|
||||
if tmp == 0 {
|
||||
continue
|
||||
}
|
||||
btmp[k] = tmp
|
||||
if nonUnit {
|
||||
btmp[k] *= a[k*lda+k]
|
||||
}
|
||||
f32.AxpyUnitary(tmp, a[k*lda+k+1:k*lda+n], btmp[k+1:n])
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
for k := 0; k < n; k++ {
|
||||
tmp := alpha * btmp[k]
|
||||
if tmp == 0 {
|
||||
continue
|
||||
}
|
||||
btmp[k] = tmp
|
||||
if nonUnit {
|
||||
btmp[k] *= a[k*lda+k]
|
||||
}
|
||||
f32.AxpyUnitary(tmp, a[k*lda:k*lda+k], btmp[:k])
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
// Cases where a is transposed.
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
for j, vb := range btmp {
|
||||
tmp := vb
|
||||
if nonUnit {
|
||||
tmp *= a[j*lda+j]
|
||||
}
|
||||
tmp += f32.DotUnitary(a[j*lda+j+1:j*lda+n], btmp[j+1:n])
|
||||
btmp[j] = alpha * tmp
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
for j := n - 1; j >= 0; j-- {
|
||||
tmp := btmp[j]
|
||||
if nonUnit {
|
||||
tmp *= a[j*lda+j]
|
||||
}
|
||||
tmp += f32.DotUnitary(a[j*lda:j*lda+j], btmp[:j])
|
||||
btmp[j] = alpha * tmp
|
||||
}
|
||||
}
|
||||
}
|
864
vendor/gonum.org/v1/gonum/blas/gonum/level3float64.go
generated
vendored
Normal file
864
vendor/gonum.org/v1/gonum/blas/gonum/level3float64.go
generated
vendored
Normal file
@@ -0,0 +1,864 @@
|
||||
// Copyright ©2014 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package gonum
|
||||
|
||||
import (
|
||||
"gonum.org/v1/gonum/blas"
|
||||
"gonum.org/v1/gonum/internal/asm/f64"
|
||||
)
|
||||
|
||||
var _ blas.Float64Level3 = Implementation{}
|
||||
|
||||
// Dtrsm solves one of the matrix equations
|
||||
// A * X = alpha * B if tA == blas.NoTrans and side == blas.Left
|
||||
// A^T * X = alpha * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Left
|
||||
// X * A = alpha * B if tA == blas.NoTrans and side == blas.Right
|
||||
// X * A^T = alpha * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Right
|
||||
// where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and alpha is a
|
||||
// scalar.
|
||||
//
|
||||
// At entry to the function, X contains the values of B, and the result is
|
||||
// stored in-place into X.
|
||||
//
|
||||
// No check is made that A is invertible.
|
||||
func (Implementation) Dtrsm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int) {
|
||||
if s != blas.Left && s != blas.Right {
|
||||
panic(badSide)
|
||||
}
|
||||
if ul != blas.Lower && ul != blas.Upper {
|
||||
panic(badUplo)
|
||||
}
|
||||
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
|
||||
panic(badTranspose)
|
||||
}
|
||||
if d != blas.NonUnit && d != blas.Unit {
|
||||
panic(badDiag)
|
||||
}
|
||||
if m < 0 {
|
||||
panic(mLT0)
|
||||
}
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
k := n
|
||||
if s == blas.Left {
|
||||
k = m
|
||||
}
|
||||
if lda < max(1, k) {
|
||||
panic(badLdA)
|
||||
}
|
||||
if ldb < max(1, n) {
|
||||
panic(badLdB)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if m == 0 || n == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// For zero matrix size the following slice length checks are trivially satisfied.
|
||||
if len(a) < lda*(k-1)+k {
|
||||
panic(shortA)
|
||||
}
|
||||
if len(b) < ldb*(m-1)+n {
|
||||
panic(shortB)
|
||||
}
|
||||
|
||||
if alpha == 0 {
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
for j := range btmp {
|
||||
btmp[j] = 0
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
nonUnit := d == blas.NonUnit
|
||||
if s == blas.Left {
|
||||
if tA == blas.NoTrans {
|
||||
if ul == blas.Upper {
|
||||
for i := m - 1; i >= 0; i-- {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
if alpha != 1 {
|
||||
f64.ScalUnitary(alpha, btmp)
|
||||
}
|
||||
for ka, va := range a[i*lda+i+1 : i*lda+m] {
|
||||
if va != 0 {
|
||||
k := ka + i + 1
|
||||
f64.AxpyUnitary(-va, b[k*ldb:k*ldb+n], btmp)
|
||||
}
|
||||
}
|
||||
if nonUnit {
|
||||
tmp := 1 / a[i*lda+i]
|
||||
f64.ScalUnitary(tmp, btmp)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
if alpha != 1 {
|
||||
f64.ScalUnitary(alpha, btmp)
|
||||
}
|
||||
for k, va := range a[i*lda : i*lda+i] {
|
||||
if va != 0 {
|
||||
f64.AxpyUnitary(-va, b[k*ldb:k*ldb+n], btmp)
|
||||
}
|
||||
}
|
||||
if nonUnit {
|
||||
tmp := 1 / a[i*lda+i]
|
||||
f64.ScalUnitary(tmp, btmp)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
// Cases where a is transposed
|
||||
if ul == blas.Upper {
|
||||
for k := 0; k < m; k++ {
|
||||
btmpk := b[k*ldb : k*ldb+n]
|
||||
if nonUnit {
|
||||
tmp := 1 / a[k*lda+k]
|
||||
f64.ScalUnitary(tmp, btmpk)
|
||||
}
|
||||
for ia, va := range a[k*lda+k+1 : k*lda+m] {
|
||||
if va != 0 {
|
||||
i := ia + k + 1
|
||||
f64.AxpyUnitary(-va, btmpk, b[i*ldb:i*ldb+n])
|
||||
}
|
||||
}
|
||||
if alpha != 1 {
|
||||
f64.ScalUnitary(alpha, btmpk)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for k := m - 1; k >= 0; k-- {
|
||||
btmpk := b[k*ldb : k*ldb+n]
|
||||
if nonUnit {
|
||||
tmp := 1 / a[k*lda+k]
|
||||
f64.ScalUnitary(tmp, btmpk)
|
||||
}
|
||||
for i, va := range a[k*lda : k*lda+k] {
|
||||
if va != 0 {
|
||||
f64.AxpyUnitary(-va, btmpk, b[i*ldb:i*ldb+n])
|
||||
}
|
||||
}
|
||||
if alpha != 1 {
|
||||
f64.ScalUnitary(alpha, btmpk)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
// Cases where a is to the right of X.
|
||||
if tA == blas.NoTrans {
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
if alpha != 1 {
|
||||
f64.ScalUnitary(alpha, btmp)
|
||||
}
|
||||
for k, vb := range btmp {
|
||||
if vb == 0 {
|
||||
continue
|
||||
}
|
||||
if nonUnit {
|
||||
btmp[k] /= a[k*lda+k]
|
||||
}
|
||||
f64.AxpyUnitary(-btmp[k], a[k*lda+k+1:k*lda+n], btmp[k+1:n])
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
if alpha != 1 {
|
||||
f64.ScalUnitary(alpha, btmp)
|
||||
}
|
||||
for k := n - 1; k >= 0; k-- {
|
||||
if btmp[k] == 0 {
|
||||
continue
|
||||
}
|
||||
if nonUnit {
|
||||
btmp[k] /= a[k*lda+k]
|
||||
}
|
||||
f64.AxpyUnitary(-btmp[k], a[k*lda:k*lda+k], btmp[:k])
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
// Cases where a is transposed.
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
for j := n - 1; j >= 0; j-- {
|
||||
tmp := alpha*btmp[j] - f64.DotUnitary(a[j*lda+j+1:j*lda+n], btmp[j+1:])
|
||||
if nonUnit {
|
||||
tmp /= a[j*lda+j]
|
||||
}
|
||||
btmp[j] = tmp
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
for j := 0; j < n; j++ {
|
||||
tmp := alpha*btmp[j] - f64.DotUnitary(a[j*lda:j*lda+j], btmp[:j])
|
||||
if nonUnit {
|
||||
tmp /= a[j*lda+j]
|
||||
}
|
||||
btmp[j] = tmp
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Dsymm performs one of the matrix-matrix operations
|
||||
// C = alpha * A * B + beta * C if side == blas.Left
|
||||
// C = alpha * B * A + beta * C if side == blas.Right
|
||||
// where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and alpha
|
||||
// is a scalar.
|
||||
func (Implementation) Dsymm(s blas.Side, ul blas.Uplo, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int) {
|
||||
if s != blas.Right && s != blas.Left {
|
||||
panic(badSide)
|
||||
}
|
||||
if ul != blas.Lower && ul != blas.Upper {
|
||||
panic(badUplo)
|
||||
}
|
||||
if m < 0 {
|
||||
panic(mLT0)
|
||||
}
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
k := n
|
||||
if s == blas.Left {
|
||||
k = m
|
||||
}
|
||||
if lda < max(1, k) {
|
||||
panic(badLdA)
|
||||
}
|
||||
if ldb < max(1, n) {
|
||||
panic(badLdB)
|
||||
}
|
||||
if ldc < max(1, n) {
|
||||
panic(badLdC)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if m == 0 || n == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// For zero matrix size the following slice length checks are trivially satisfied.
|
||||
if len(a) < lda*(k-1)+k {
|
||||
panic(shortA)
|
||||
}
|
||||
if len(b) < ldb*(m-1)+n {
|
||||
panic(shortB)
|
||||
}
|
||||
if len(c) < ldc*(m-1)+n {
|
||||
panic(shortC)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if alpha == 0 && beta == 1 {
|
||||
return
|
||||
}
|
||||
|
||||
if alpha == 0 {
|
||||
if beta == 0 {
|
||||
for i := 0; i < m; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for j := range ctmp {
|
||||
ctmp[j] = 0
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < m; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for j := 0; j < n; j++ {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
isUpper := ul == blas.Upper
|
||||
if s == blas.Left {
|
||||
for i := 0; i < m; i++ {
|
||||
atmp := alpha * a[i*lda+i]
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for j, v := range btmp {
|
||||
ctmp[j] *= beta
|
||||
ctmp[j] += atmp * v
|
||||
}
|
||||
|
||||
for k := 0; k < i; k++ {
|
||||
var atmp float64
|
||||
if isUpper {
|
||||
atmp = a[k*lda+i]
|
||||
} else {
|
||||
atmp = a[i*lda+k]
|
||||
}
|
||||
atmp *= alpha
|
||||
f64.AxpyUnitary(atmp, b[k*ldb:k*ldb+n], ctmp)
|
||||
}
|
||||
for k := i + 1; k < m; k++ {
|
||||
var atmp float64
|
||||
if isUpper {
|
||||
atmp = a[i*lda+k]
|
||||
} else {
|
||||
atmp = a[k*lda+i]
|
||||
}
|
||||
atmp *= alpha
|
||||
f64.AxpyUnitary(atmp, b[k*ldb:k*ldb+n], ctmp)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
if isUpper {
|
||||
for i := 0; i < m; i++ {
|
||||
for j := n - 1; j >= 0; j-- {
|
||||
tmp := alpha * b[i*ldb+j]
|
||||
var tmp2 float64
|
||||
atmp := a[j*lda+j+1 : j*lda+n]
|
||||
btmp := b[i*ldb+j+1 : i*ldb+n]
|
||||
ctmp := c[i*ldc+j+1 : i*ldc+n]
|
||||
for k, v := range atmp {
|
||||
ctmp[k] += tmp * v
|
||||
tmp2 += btmp[k] * v
|
||||
}
|
||||
c[i*ldc+j] *= beta
|
||||
c[i*ldc+j] += tmp*a[j*lda+j] + alpha*tmp2
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < m; i++ {
|
||||
for j := 0; j < n; j++ {
|
||||
tmp := alpha * b[i*ldb+j]
|
||||
var tmp2 float64
|
||||
atmp := a[j*lda : j*lda+j]
|
||||
btmp := b[i*ldb : i*ldb+j]
|
||||
ctmp := c[i*ldc : i*ldc+j]
|
||||
for k, v := range atmp {
|
||||
ctmp[k] += tmp * v
|
||||
tmp2 += btmp[k] * v
|
||||
}
|
||||
c[i*ldc+j] *= beta
|
||||
c[i*ldc+j] += tmp*a[j*lda+j] + alpha*tmp2
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Dsyrk performs one of the symmetric rank-k operations
|
||||
// C = alpha * A * A^T + beta * C if tA == blas.NoTrans
|
||||
// C = alpha * A^T * A + beta * C if tA == blas.Trans or tA == blas.ConjTrans
|
||||
// where A is an n×k or k×n matrix, C is an n×n symmetric matrix, and alpha and
|
||||
// beta are scalars.
|
||||
func (Implementation) Dsyrk(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float64, a []float64, lda int, beta float64, c []float64, ldc int) {
|
||||
if ul != blas.Lower && ul != blas.Upper {
|
||||
panic(badUplo)
|
||||
}
|
||||
if tA != blas.Trans && tA != blas.NoTrans && tA != blas.ConjTrans {
|
||||
panic(badTranspose)
|
||||
}
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
if k < 0 {
|
||||
panic(kLT0)
|
||||
}
|
||||
row, col := k, n
|
||||
if tA == blas.NoTrans {
|
||||
row, col = n, k
|
||||
}
|
||||
if lda < max(1, col) {
|
||||
panic(badLdA)
|
||||
}
|
||||
if ldc < max(1, n) {
|
||||
panic(badLdC)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// For zero matrix size the following slice length checks are trivially satisfied.
|
||||
if len(a) < lda*(row-1)+col {
|
||||
panic(shortA)
|
||||
}
|
||||
if len(c) < ldc*(n-1)+n {
|
||||
panic(shortC)
|
||||
}
|
||||
|
||||
if alpha == 0 {
|
||||
if beta == 0 {
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc+i : i*ldc+n]
|
||||
for j := range ctmp {
|
||||
ctmp[j] = 0
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+i+1]
|
||||
for j := range ctmp {
|
||||
ctmp[j] = 0
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc+i : i*ldc+n]
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+i+1]
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
if tA == blas.NoTrans {
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc+i : i*ldc+n]
|
||||
atmp := a[i*lda : i*lda+k]
|
||||
if beta == 0 {
|
||||
for jc := range ctmp {
|
||||
j := jc + i
|
||||
ctmp[jc] = alpha * f64.DotUnitary(atmp, a[j*lda:j*lda+k])
|
||||
}
|
||||
} else {
|
||||
for jc, vc := range ctmp {
|
||||
j := jc + i
|
||||
ctmp[jc] = vc*beta + alpha*f64.DotUnitary(atmp, a[j*lda:j*lda+k])
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+i+1]
|
||||
atmp := a[i*lda : i*lda+k]
|
||||
if beta == 0 {
|
||||
for j := range ctmp {
|
||||
ctmp[j] = alpha * f64.DotUnitary(a[j*lda:j*lda+k], atmp)
|
||||
}
|
||||
} else {
|
||||
for j, vc := range ctmp {
|
||||
ctmp[j] = vc*beta + alpha*f64.DotUnitary(a[j*lda:j*lda+k], atmp)
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
// Cases where a is transposed.
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc+i : i*ldc+n]
|
||||
if beta == 0 {
|
||||
for j := range ctmp {
|
||||
ctmp[j] = 0
|
||||
}
|
||||
} else if beta != 1 {
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
for l := 0; l < k; l++ {
|
||||
tmp := alpha * a[l*lda+i]
|
||||
if tmp != 0 {
|
||||
f64.AxpyUnitary(tmp, a[l*lda+i:l*lda+n], ctmp)
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+i+1]
|
||||
if beta != 1 {
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
for l := 0; l < k; l++ {
|
||||
tmp := alpha * a[l*lda+i]
|
||||
if tmp != 0 {
|
||||
f64.AxpyUnitary(tmp, a[l*lda:l*lda+i+1], ctmp)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Dsyr2k performs one of the symmetric rank 2k operations
|
||||
// C = alpha * A * B^T + alpha * B * A^T + beta * C if tA == blas.NoTrans
|
||||
// C = alpha * A^T * B + alpha * B^T * A + beta * C if tA == blas.Trans or tA == blas.ConjTrans
|
||||
// where A and B are n×k or k×n matrices, C is an n×n symmetric matrix, and
|
||||
// alpha and beta are scalars.
|
||||
func (Implementation) Dsyr2k(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int) {
|
||||
if ul != blas.Lower && ul != blas.Upper {
|
||||
panic(badUplo)
|
||||
}
|
||||
if tA != blas.Trans && tA != blas.NoTrans && tA != blas.ConjTrans {
|
||||
panic(badTranspose)
|
||||
}
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
if k < 0 {
|
||||
panic(kLT0)
|
||||
}
|
||||
row, col := k, n
|
||||
if tA == blas.NoTrans {
|
||||
row, col = n, k
|
||||
}
|
||||
if lda < max(1, col) {
|
||||
panic(badLdA)
|
||||
}
|
||||
if ldb < max(1, col) {
|
||||
panic(badLdB)
|
||||
}
|
||||
if ldc < max(1, n) {
|
||||
panic(badLdC)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// For zero matrix size the following slice length checks are trivially satisfied.
|
||||
if len(a) < lda*(row-1)+col {
|
||||
panic(shortA)
|
||||
}
|
||||
if len(b) < ldb*(row-1)+col {
|
||||
panic(shortB)
|
||||
}
|
||||
if len(c) < ldc*(n-1)+n {
|
||||
panic(shortC)
|
||||
}
|
||||
|
||||
if alpha == 0 {
|
||||
if beta == 0 {
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc+i : i*ldc+n]
|
||||
for j := range ctmp {
|
||||
ctmp[j] = 0
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+i+1]
|
||||
for j := range ctmp {
|
||||
ctmp[j] = 0
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc+i : i*ldc+n]
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+i+1]
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
if tA == blas.NoTrans {
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < n; i++ {
|
||||
atmp := a[i*lda : i*lda+k]
|
||||
btmp := b[i*ldb : i*ldb+k]
|
||||
ctmp := c[i*ldc+i : i*ldc+n]
|
||||
for jc := range ctmp {
|
||||
j := i + jc
|
||||
var tmp1, tmp2 float64
|
||||
binner := b[j*ldb : j*ldb+k]
|
||||
for l, v := range a[j*lda : j*lda+k] {
|
||||
tmp1 += v * btmp[l]
|
||||
tmp2 += atmp[l] * binner[l]
|
||||
}
|
||||
ctmp[jc] *= beta
|
||||
ctmp[jc] += alpha * (tmp1 + tmp2)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
atmp := a[i*lda : i*lda+k]
|
||||
btmp := b[i*ldb : i*ldb+k]
|
||||
ctmp := c[i*ldc : i*ldc+i+1]
|
||||
for j := 0; j <= i; j++ {
|
||||
var tmp1, tmp2 float64
|
||||
binner := b[j*ldb : j*ldb+k]
|
||||
for l, v := range a[j*lda : j*lda+k] {
|
||||
tmp1 += v * btmp[l]
|
||||
tmp2 += atmp[l] * binner[l]
|
||||
}
|
||||
ctmp[j] *= beta
|
||||
ctmp[j] += alpha * (tmp1 + tmp2)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc+i : i*ldc+n]
|
||||
if beta != 1 {
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
for l := 0; l < k; l++ {
|
||||
tmp1 := alpha * b[l*ldb+i]
|
||||
tmp2 := alpha * a[l*lda+i]
|
||||
btmp := b[l*ldb+i : l*ldb+n]
|
||||
if tmp1 != 0 || tmp2 != 0 {
|
||||
for j, v := range a[l*lda+i : l*lda+n] {
|
||||
ctmp[j] += v*tmp1 + btmp[j]*tmp2
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+i+1]
|
||||
if beta != 1 {
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
for l := 0; l < k; l++ {
|
||||
tmp1 := alpha * b[l*ldb+i]
|
||||
tmp2 := alpha * a[l*lda+i]
|
||||
btmp := b[l*ldb : l*ldb+i+1]
|
||||
if tmp1 != 0 || tmp2 != 0 {
|
||||
for j, v := range a[l*lda : l*lda+i+1] {
|
||||
ctmp[j] += v*tmp1 + btmp[j]*tmp2
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Dtrmm performs one of the matrix-matrix operations
|
||||
// B = alpha * A * B if tA == blas.NoTrans and side == blas.Left
|
||||
// B = alpha * A^T * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Left
|
||||
// B = alpha * B * A if tA == blas.NoTrans and side == blas.Right
|
||||
// B = alpha * B * A^T if tA == blas.Trans or blas.ConjTrans, and side == blas.Right
|
||||
// where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is a scalar.
|
||||
func (Implementation) Dtrmm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int) {
|
||||
if s != blas.Left && s != blas.Right {
|
||||
panic(badSide)
|
||||
}
|
||||
if ul != blas.Lower && ul != blas.Upper {
|
||||
panic(badUplo)
|
||||
}
|
||||
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
|
||||
panic(badTranspose)
|
||||
}
|
||||
if d != blas.NonUnit && d != blas.Unit {
|
||||
panic(badDiag)
|
||||
}
|
||||
if m < 0 {
|
||||
panic(mLT0)
|
||||
}
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
k := n
|
||||
if s == blas.Left {
|
||||
k = m
|
||||
}
|
||||
if lda < max(1, k) {
|
||||
panic(badLdA)
|
||||
}
|
||||
if ldb < max(1, n) {
|
||||
panic(badLdB)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if m == 0 || n == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// For zero matrix size the following slice length checks are trivially satisfied.
|
||||
if len(a) < lda*(k-1)+k {
|
||||
panic(shortA)
|
||||
}
|
||||
if len(b) < ldb*(m-1)+n {
|
||||
panic(shortB)
|
||||
}
|
||||
|
||||
if alpha == 0 {
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
for j := range btmp {
|
||||
btmp[j] = 0
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
nonUnit := d == blas.NonUnit
|
||||
if s == blas.Left {
|
||||
if tA == blas.NoTrans {
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < m; i++ {
|
||||
tmp := alpha
|
||||
if nonUnit {
|
||||
tmp *= a[i*lda+i]
|
||||
}
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
f64.ScalUnitary(tmp, btmp)
|
||||
for ka, va := range a[i*lda+i+1 : i*lda+m] {
|
||||
k := ka + i + 1
|
||||
if va != 0 {
|
||||
f64.AxpyUnitary(alpha*va, b[k*ldb:k*ldb+n], btmp)
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := m - 1; i >= 0; i-- {
|
||||
tmp := alpha
|
||||
if nonUnit {
|
||||
tmp *= a[i*lda+i]
|
||||
}
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
f64.ScalUnitary(tmp, btmp)
|
||||
for k, va := range a[i*lda : i*lda+i] {
|
||||
if va != 0 {
|
||||
f64.AxpyUnitary(alpha*va, b[k*ldb:k*ldb+n], btmp)
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
// Cases where a is transposed.
|
||||
if ul == blas.Upper {
|
||||
for k := m - 1; k >= 0; k-- {
|
||||
btmpk := b[k*ldb : k*ldb+n]
|
||||
for ia, va := range a[k*lda+k+1 : k*lda+m] {
|
||||
i := ia + k + 1
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
if va != 0 {
|
||||
f64.AxpyUnitary(alpha*va, btmpk, btmp)
|
||||
}
|
||||
}
|
||||
tmp := alpha
|
||||
if nonUnit {
|
||||
tmp *= a[k*lda+k]
|
||||
}
|
||||
if tmp != 1 {
|
||||
f64.ScalUnitary(tmp, btmpk)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for k := 0; k < m; k++ {
|
||||
btmpk := b[k*ldb : k*ldb+n]
|
||||
for i, va := range a[k*lda : k*lda+k] {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
if va != 0 {
|
||||
f64.AxpyUnitary(alpha*va, btmpk, btmp)
|
||||
}
|
||||
}
|
||||
tmp := alpha
|
||||
if nonUnit {
|
||||
tmp *= a[k*lda+k]
|
||||
}
|
||||
if tmp != 1 {
|
||||
f64.ScalUnitary(tmp, btmpk)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
// Cases where a is on the right
|
||||
if tA == blas.NoTrans {
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
for k := n - 1; k >= 0; k-- {
|
||||
tmp := alpha * btmp[k]
|
||||
if tmp == 0 {
|
||||
continue
|
||||
}
|
||||
btmp[k] = tmp
|
||||
if nonUnit {
|
||||
btmp[k] *= a[k*lda+k]
|
||||
}
|
||||
f64.AxpyUnitary(tmp, a[k*lda+k+1:k*lda+n], btmp[k+1:n])
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
for k := 0; k < n; k++ {
|
||||
tmp := alpha * btmp[k]
|
||||
if tmp == 0 {
|
||||
continue
|
||||
}
|
||||
btmp[k] = tmp
|
||||
if nonUnit {
|
||||
btmp[k] *= a[k*lda+k]
|
||||
}
|
||||
f64.AxpyUnitary(tmp, a[k*lda:k*lda+k], btmp[:k])
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
// Cases where a is transposed.
|
||||
if ul == blas.Upper {
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
for j, vb := range btmp {
|
||||
tmp := vb
|
||||
if nonUnit {
|
||||
tmp *= a[j*lda+j]
|
||||
}
|
||||
tmp += f64.DotUnitary(a[j*lda+j+1:j*lda+n], btmp[j+1:n])
|
||||
btmp[j] = alpha * tmp
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
for i := 0; i < m; i++ {
|
||||
btmp := b[i*ldb : i*ldb+n]
|
||||
for j := n - 1; j >= 0; j-- {
|
||||
tmp := btmp[j]
|
||||
if nonUnit {
|
||||
tmp *= a[j*lda+j]
|
||||
}
|
||||
tmp += f64.DotUnitary(a[j*lda:j*lda+j], btmp[:j])
|
||||
btmp[j] = alpha * tmp
|
||||
}
|
||||
}
|
||||
}
|
318
vendor/gonum.org/v1/gonum/blas/gonum/sgemm.go
generated
vendored
Normal file
318
vendor/gonum.org/v1/gonum/blas/gonum/sgemm.go
generated
vendored
Normal file
@@ -0,0 +1,318 @@
|
||||
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
|
||||
|
||||
// Copyright ©2014 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package gonum
|
||||
|
||||
import (
|
||||
"runtime"
|
||||
"sync"
|
||||
|
||||
"gonum.org/v1/gonum/blas"
|
||||
"gonum.org/v1/gonum/internal/asm/f32"
|
||||
)
|
||||
|
||||
// Sgemm performs one of the matrix-matrix operations
|
||||
// C = alpha * A * B + beta * C
|
||||
// C = alpha * A^T * B + beta * C
|
||||
// C = alpha * A * B^T + beta * C
|
||||
// C = alpha * A^T * B^T + beta * C
|
||||
// where A is an m×k or k×m dense matrix, B is an n×k or k×n dense matrix, C is
|
||||
// an m×n matrix, and alpha and beta are scalars. tA and tB specify whether A or
|
||||
// B are transposed.
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Sgemm(tA, tB blas.Transpose, m, n, k int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int) {
|
||||
switch tA {
|
||||
default:
|
||||
panic(badTranspose)
|
||||
case blas.NoTrans, blas.Trans, blas.ConjTrans:
|
||||
}
|
||||
switch tB {
|
||||
default:
|
||||
panic(badTranspose)
|
||||
case blas.NoTrans, blas.Trans, blas.ConjTrans:
|
||||
}
|
||||
if m < 0 {
|
||||
panic(mLT0)
|
||||
}
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
if k < 0 {
|
||||
panic(kLT0)
|
||||
}
|
||||
aTrans := tA == blas.Trans || tA == blas.ConjTrans
|
||||
if aTrans {
|
||||
if lda < max(1, m) {
|
||||
panic(badLdA)
|
||||
}
|
||||
} else {
|
||||
if lda < max(1, k) {
|
||||
panic(badLdA)
|
||||
}
|
||||
}
|
||||
bTrans := tB == blas.Trans || tB == blas.ConjTrans
|
||||
if bTrans {
|
||||
if ldb < max(1, k) {
|
||||
panic(badLdB)
|
||||
}
|
||||
} else {
|
||||
if ldb < max(1, n) {
|
||||
panic(badLdB)
|
||||
}
|
||||
}
|
||||
if ldc < max(1, n) {
|
||||
panic(badLdC)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if m == 0 || n == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// For zero matrix size the following slice length checks are trivially satisfied.
|
||||
if aTrans {
|
||||
if len(a) < (k-1)*lda+m {
|
||||
panic(shortA)
|
||||
}
|
||||
} else {
|
||||
if len(a) < (m-1)*lda+k {
|
||||
panic(shortA)
|
||||
}
|
||||
}
|
||||
if bTrans {
|
||||
if len(b) < (n-1)*ldb+k {
|
||||
panic(shortB)
|
||||
}
|
||||
} else {
|
||||
if len(b) < (k-1)*ldb+n {
|
||||
panic(shortB)
|
||||
}
|
||||
}
|
||||
if len(c) < (m-1)*ldc+n {
|
||||
panic(shortC)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if (alpha == 0 || k == 0) && beta == 1 {
|
||||
return
|
||||
}
|
||||
|
||||
// scale c
|
||||
if beta != 1 {
|
||||
if beta == 0 {
|
||||
for i := 0; i < m; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for j := range ctmp {
|
||||
ctmp[j] = 0
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for i := 0; i < m; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sgemmParallel(aTrans, bTrans, m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
}
|
||||
|
||||
func sgemmParallel(aTrans, bTrans bool, m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
|
||||
// dgemmParallel computes a parallel matrix multiplication by partitioning
|
||||
// a and b into sub-blocks, and updating c with the multiplication of the sub-block
|
||||
// In all cases,
|
||||
// A = [ A_11 A_12 ... A_1j
|
||||
// A_21 A_22 ... A_2j
|
||||
// ...
|
||||
// A_i1 A_i2 ... A_ij]
|
||||
//
|
||||
// and same for B. All of the submatrix sizes are blockSize×blockSize except
|
||||
// at the edges.
|
||||
//
|
||||
// In all cases, there is one dimension for each matrix along which
|
||||
// C must be updated sequentially.
|
||||
// Cij = \sum_k Aik Bki, (A * B)
|
||||
// Cij = \sum_k Aki Bkj, (A^T * B)
|
||||
// Cij = \sum_k Aik Bjk, (A * B^T)
|
||||
// Cij = \sum_k Aki Bjk, (A^T * B^T)
|
||||
//
|
||||
// This code computes one {i, j} block sequentially along the k dimension,
|
||||
// and computes all of the {i, j} blocks concurrently. This
|
||||
// partitioning allows Cij to be updated in-place without race-conditions.
|
||||
// Instead of launching a goroutine for each possible concurrent computation,
|
||||
// a number of worker goroutines are created and channels are used to pass
|
||||
// available and completed cases.
|
||||
//
|
||||
// http://alexkr.com/docs/matrixmult.pdf is a good reference on matrix-matrix
|
||||
// multiplies, though this code does not copy matrices to attempt to eliminate
|
||||
// cache misses.
|
||||
|
||||
maxKLen := k
|
||||
parBlocks := blocks(m, blockSize) * blocks(n, blockSize)
|
||||
if parBlocks < minParBlock {
|
||||
// The matrix multiplication is small in the dimensions where it can be
|
||||
// computed concurrently. Just do it in serial.
|
||||
sgemmSerial(aTrans, bTrans, m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
return
|
||||
}
|
||||
|
||||
nWorkers := runtime.GOMAXPROCS(0)
|
||||
if parBlocks < nWorkers {
|
||||
nWorkers = parBlocks
|
||||
}
|
||||
// There is a tradeoff between the workers having to wait for work
|
||||
// and a large buffer making operations slow.
|
||||
buf := buffMul * nWorkers
|
||||
if buf > parBlocks {
|
||||
buf = parBlocks
|
||||
}
|
||||
|
||||
sendChan := make(chan subMul, buf)
|
||||
|
||||
// Launch workers. A worker receives an {i, j} submatrix of c, and computes
|
||||
// A_ik B_ki (or the transposed version) storing the result in c_ij. When the
|
||||
// channel is finally closed, it signals to the waitgroup that it has finished
|
||||
// computing.
|
||||
var wg sync.WaitGroup
|
||||
for i := 0; i < nWorkers; i++ {
|
||||
wg.Add(1)
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
for sub := range sendChan {
|
||||
i := sub.i
|
||||
j := sub.j
|
||||
leni := blockSize
|
||||
if i+leni > m {
|
||||
leni = m - i
|
||||
}
|
||||
lenj := blockSize
|
||||
if j+lenj > n {
|
||||
lenj = n - j
|
||||
}
|
||||
|
||||
cSub := sliceView32(c, ldc, i, j, leni, lenj)
|
||||
|
||||
// Compute A_ik B_kj for all k
|
||||
for k := 0; k < maxKLen; k += blockSize {
|
||||
lenk := blockSize
|
||||
if k+lenk > maxKLen {
|
||||
lenk = maxKLen - k
|
||||
}
|
||||
var aSub, bSub []float32
|
||||
if aTrans {
|
||||
aSub = sliceView32(a, lda, k, i, lenk, leni)
|
||||
} else {
|
||||
aSub = sliceView32(a, lda, i, k, leni, lenk)
|
||||
}
|
||||
if bTrans {
|
||||
bSub = sliceView32(b, ldb, j, k, lenj, lenk)
|
||||
} else {
|
||||
bSub = sliceView32(b, ldb, k, j, lenk, lenj)
|
||||
}
|
||||
sgemmSerial(aTrans, bTrans, leni, lenj, lenk, aSub, lda, bSub, ldb, cSub, ldc, alpha)
|
||||
}
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
// Send out all of the {i, j} subblocks for computation.
|
||||
for i := 0; i < m; i += blockSize {
|
||||
for j := 0; j < n; j += blockSize {
|
||||
sendChan <- subMul{
|
||||
i: i,
|
||||
j: j,
|
||||
}
|
||||
}
|
||||
}
|
||||
close(sendChan)
|
||||
wg.Wait()
|
||||
}
|
||||
|
||||
// sgemmSerial is serial matrix multiply
|
||||
func sgemmSerial(aTrans, bTrans bool, m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
|
||||
switch {
|
||||
case !aTrans && !bTrans:
|
||||
sgemmSerialNotNot(m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
return
|
||||
case aTrans && !bTrans:
|
||||
sgemmSerialTransNot(m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
return
|
||||
case !aTrans && bTrans:
|
||||
sgemmSerialNotTrans(m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
return
|
||||
case aTrans && bTrans:
|
||||
sgemmSerialTransTrans(m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
return
|
||||
default:
|
||||
panic("unreachable")
|
||||
}
|
||||
}
|
||||
|
||||
// sgemmSerial where neither a nor b are transposed
|
||||
func sgemmSerialNotNot(m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
|
||||
// This style is used instead of the literal [i*stride +j]) is used because
|
||||
// approximately 5 times faster as of go 1.3.
|
||||
for i := 0; i < m; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for l, v := range a[i*lda : i*lda+k] {
|
||||
tmp := alpha * v
|
||||
if tmp != 0 {
|
||||
f32.AxpyUnitary(tmp, b[l*ldb:l*ldb+n], ctmp)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// sgemmSerial where neither a is transposed and b is not
|
||||
func sgemmSerialTransNot(m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
|
||||
// This style is used instead of the literal [i*stride +j]) is used because
|
||||
// approximately 5 times faster as of go 1.3.
|
||||
for l := 0; l < k; l++ {
|
||||
btmp := b[l*ldb : l*ldb+n]
|
||||
for i, v := range a[l*lda : l*lda+m] {
|
||||
tmp := alpha * v
|
||||
if tmp != 0 {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
f32.AxpyUnitary(tmp, btmp, ctmp)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// sgemmSerial where neither a is not transposed and b is
|
||||
func sgemmSerialNotTrans(m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
|
||||
// This style is used instead of the literal [i*stride +j]) is used because
|
||||
// approximately 5 times faster as of go 1.3.
|
||||
for i := 0; i < m; i++ {
|
||||
atmp := a[i*lda : i*lda+k]
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for j := 0; j < n; j++ {
|
||||
ctmp[j] += alpha * f32.DotUnitary(atmp, b[j*ldb:j*ldb+k])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// sgemmSerial where both are transposed
|
||||
func sgemmSerialTransTrans(m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
|
||||
// This style is used instead of the literal [i*stride +j]) is used because
|
||||
// approximately 5 times faster as of go 1.3.
|
||||
for l := 0; l < k; l++ {
|
||||
for i, v := range a[l*lda : l*lda+m] {
|
||||
tmp := alpha * v
|
||||
if tmp != 0 {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
f32.AxpyInc(tmp, b[l:], ctmp, uintptr(n), uintptr(ldb), 1, 0, 0)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func sliceView32(a []float32, lda, i, j, r, c int) []float32 {
|
||||
return a[i*lda+j : (i+r-1)*lda+j+c]
|
||||
}
|
218
vendor/gonum.org/v1/gonum/blas/gonum/single_precision.bash
generated
vendored
Normal file
218
vendor/gonum.org/v1/gonum/blas/gonum/single_precision.bash
generated
vendored
Normal file
@@ -0,0 +1,218 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Copyright ©2015 The Gonum Authors. All rights reserved.
|
||||
# Use of this source code is governed by a BSD-style
|
||||
# license that can be found in the LICENSE file.
|
||||
|
||||
WARNINGF32='//\
|
||||
// Float32 implementations are autogenerated and not directly tested.\
|
||||
'
|
||||
WARNINGC64='//\
|
||||
// Complex64 implementations are autogenerated and not directly tested.\
|
||||
'
|
||||
|
||||
# Level1 routines.
|
||||
|
||||
echo Generating level1float32.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level1float32.go
|
||||
cat level1float64.go \
|
||||
| gofmt -r 'blas.Float64Level1 -> blas.Float32Level1' \
|
||||
\
|
||||
| gofmt -r 'float64 -> float32' \
|
||||
| gofmt -r 'blas.DrotmParams -> blas.SrotmParams' \
|
||||
\
|
||||
| gofmt -r 'f64.AxpyInc -> f32.AxpyInc' \
|
||||
| gofmt -r 'f64.AxpyUnitary -> f32.AxpyUnitary' \
|
||||
| gofmt -r 'f64.DotUnitary -> f32.DotUnitary' \
|
||||
| gofmt -r 'f64.ScalInc -> f32.ScalInc' \
|
||||
| gofmt -r 'f64.ScalUnitary -> f32.ScalUnitary' \
|
||||
\
|
||||
| sed -e "s_^\(func (Implementation) \)D\(.*\)\$_$WARNINGF32\1S\2_" \
|
||||
-e 's_^// D_// S_' \
|
||||
-e "s_^\(func (Implementation) \)Id\(.*\)\$_$WARNINGF32\1Is\2_" \
|
||||
-e 's_^// Id_// Is_' \
|
||||
-e 's_"gonum.org/v1/gonum/internal/asm/f64"_"gonum.org/v1/gonum/internal/asm/f32"_' \
|
||||
-e 's_"math"_math "gonum.org/v1/gonum/internal/math32"_' \
|
||||
>> level1float32.go
|
||||
|
||||
echo Generating level1cmplx64.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level1cmplx64.go
|
||||
cat level1cmplx128.go \
|
||||
| gofmt -r 'blas.Complex128Level1 -> blas.Complex64Level1' \
|
||||
\
|
||||
| gofmt -r 'float64 -> float32' \
|
||||
| gofmt -r 'complex128 -> complex64' \
|
||||
\
|
||||
| gofmt -r 'c128.AxpyInc -> c64.AxpyInc' \
|
||||
| gofmt -r 'c128.AxpyUnitary -> c64.AxpyUnitary' \
|
||||
| gofmt -r 'c128.DotcInc -> c64.DotcInc' \
|
||||
| gofmt -r 'c128.DotcUnitary -> c64.DotcUnitary' \
|
||||
| gofmt -r 'c128.DotuInc -> c64.DotuInc' \
|
||||
| gofmt -r 'c128.DotuUnitary -> c64.DotuUnitary' \
|
||||
| gofmt -r 'c128.ScalInc -> c64.ScalInc' \
|
||||
| gofmt -r 'c128.ScalUnitary -> c64.ScalUnitary' \
|
||||
| gofmt -r 'dcabs1 -> scabs1' \
|
||||
\
|
||||
| sed -e "s_^\(func (Implementation) \)Zdot\(.*\)\$_$WARNINGC64\1Cdot\2_" \
|
||||
-e 's_^// Zdot_// Cdot_' \
|
||||
-e "s_^\(func (Implementation) \)Zdscal\(.*\)\$_$WARNINGC64\1Csscal\2_" \
|
||||
-e 's_^// Zdscal_// Csscal_' \
|
||||
-e "s_^\(func (Implementation) \)Z\(.*\)\$_$WARNINGC64\1C\2_" \
|
||||
-e 's_^// Z_// C_' \
|
||||
-e "s_^\(func (Implementation) \)Iz\(.*\)\$_$WARNINGC64\1Ic\2_" \
|
||||
-e 's_^// Iz_// Ic_' \
|
||||
-e "s_^\(func (Implementation) \)Dz\(.*\)\$_$WARNINGC64\1Sc\2_" \
|
||||
-e 's_^// Dz_// Sc_' \
|
||||
-e 's_"gonum.org/v1/gonum/internal/asm/c128"_"gonum.org/v1/gonum/internal/asm/c64"_' \
|
||||
-e 's_"math"_math "gonum.org/v1/gonum/internal/math32"_' \
|
||||
>> level1cmplx64.go
|
||||
|
||||
echo Generating level1float32_sdot.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level1float32_sdot.go
|
||||
cat level1float64_ddot.go \
|
||||
| gofmt -r 'float64 -> float32' \
|
||||
\
|
||||
| gofmt -r 'f64.DotInc -> f32.DotInc' \
|
||||
| gofmt -r 'f64.DotUnitary -> f32.DotUnitary' \
|
||||
\
|
||||
| sed -e "s_^\(func (Implementation) \)D\(.*\)\$_$WARNINGF32\1S\2_" \
|
||||
-e 's_^// D_// S_' \
|
||||
-e 's_"gonum.org/v1/gonum/internal/asm/f64"_"gonum.org/v1/gonum/internal/asm/f32"_' \
|
||||
>> level1float32_sdot.go
|
||||
|
||||
echo Generating level1float32_dsdot.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level1float32_dsdot.go
|
||||
cat level1float64_ddot.go \
|
||||
| gofmt -r '[]float64 -> []float32' \
|
||||
\
|
||||
| gofmt -r 'f64.DotInc -> f32.DdotInc' \
|
||||
| gofmt -r 'f64.DotUnitary -> f32.DdotUnitary' \
|
||||
\
|
||||
| sed -e "s_^\(func (Implementation) \)D\(.*\)\$_$WARNINGF32\1Ds\2_" \
|
||||
-e 's_^// D_// Ds_' \
|
||||
-e 's_"gonum.org/v1/gonum/internal/asm/f64"_"gonum.org/v1/gonum/internal/asm/f32"_' \
|
||||
>> level1float32_dsdot.go
|
||||
|
||||
echo Generating level1float32_sdsdot.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level1float32_sdsdot.go
|
||||
cat level1float64_ddot.go \
|
||||
| gofmt -r 'float64 -> float32' \
|
||||
\
|
||||
| gofmt -r 'f64.DotInc(x, y, f(n), f(incX), f(incY), f(ix), f(iy)) -> alpha + float32(f32.DdotInc(x, y, f(n), f(incX), f(incY), f(ix), f(iy)))' \
|
||||
| gofmt -r 'f64.DotUnitary(a, b) -> alpha + float32(f32.DdotUnitary(a, b))' \
|
||||
\
|
||||
| sed -e "s_^\(func (Implementation) \)D\(.*\)\$_$WARNINGF32\1Sds\2_" \
|
||||
-e 's_^// D\(.*\)$_// Sds\1 plus a constant_' \
|
||||
-e 's_\\sum_alpha + \\sum_' \
|
||||
-e 's/n int/n int, alpha float32/' \
|
||||
-e 's_"gonum.org/v1/gonum/internal/asm/f64"_"gonum.org/v1/gonum/internal/asm/f32"_' \
|
||||
>> level1float32_sdsdot.go
|
||||
|
||||
|
||||
# Level2 routines.
|
||||
|
||||
echo Generating level2float32.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level2float32.go
|
||||
cat level2float64.go \
|
||||
| gofmt -r 'blas.Float64Level2 -> blas.Float32Level2' \
|
||||
\
|
||||
| gofmt -r 'float64 -> float32' \
|
||||
\
|
||||
| gofmt -r 'f64.AxpyInc -> f32.AxpyInc' \
|
||||
| gofmt -r 'f64.AxpyIncTo -> f32.AxpyIncTo' \
|
||||
| gofmt -r 'f64.AxpyUnitary -> f32.AxpyUnitary' \
|
||||
| gofmt -r 'f64.AxpyUnitaryTo -> f32.AxpyUnitaryTo' \
|
||||
| gofmt -r 'f64.DotInc -> f32.DotInc' \
|
||||
| gofmt -r 'f64.DotUnitary -> f32.DotUnitary' \
|
||||
| gofmt -r 'f64.ScalInc -> f32.ScalInc' \
|
||||
| gofmt -r 'f64.ScalUnitary -> f32.ScalUnitary' \
|
||||
| gofmt -r 'f64.Ger -> f32.Ger' \
|
||||
\
|
||||
| sed -e "s_^\(func (Implementation) \)D\(.*\)\$_$WARNINGF32\1S\2_" \
|
||||
-e 's_^// D_// S_' \
|
||||
-e 's_"gonum.org/v1/gonum/internal/asm/f64"_"gonum.org/v1/gonum/internal/asm/f32"_' \
|
||||
>> level2float32.go
|
||||
|
||||
echo Generating level2cmplx64.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level2cmplx64.go
|
||||
cat level2cmplx128.go \
|
||||
| gofmt -r 'blas.Complex128Level2 -> blas.Complex64Level2' \
|
||||
\
|
||||
| gofmt -r 'complex128 -> complex64' \
|
||||
| gofmt -r 'float64 -> float32' \
|
||||
\
|
||||
| gofmt -r 'c128.AxpyInc -> c64.AxpyInc' \
|
||||
| gofmt -r 'c128.AxpyUnitary -> c64.AxpyUnitary' \
|
||||
| gofmt -r 'c128.DotuInc -> c64.DotuInc' \
|
||||
| gofmt -r 'c128.DotuUnitary -> c64.DotuUnitary' \
|
||||
| gofmt -r 'c128.ScalInc -> c64.ScalInc' \
|
||||
| gofmt -r 'c128.ScalUnitary -> c64.ScalUnitary' \
|
||||
\
|
||||
| sed -e "s_^\(func (Implementation) \)Z\(.*\)\$_$WARNINGC64\1C\2_" \
|
||||
-e 's_^// Z_// C_' \
|
||||
-e 's_"gonum.org/v1/gonum/internal/asm/c128"_"gonum.org/v1/gonum/internal/asm/c64"_' \
|
||||
-e 's_"math/cmplx"_cmplx "gonum.org/v1/gonum/internal/cmplx64"_' \
|
||||
>> level2cmplx64.go
|
||||
|
||||
# Level3 routines.
|
||||
|
||||
echo Generating level3float32.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level3float32.go
|
||||
cat level3float64.go \
|
||||
| gofmt -r 'blas.Float64Level3 -> blas.Float32Level3' \
|
||||
\
|
||||
| gofmt -r 'float64 -> float32' \
|
||||
\
|
||||
| gofmt -r 'f64.AxpyUnitaryTo -> f32.AxpyUnitaryTo' \
|
||||
| gofmt -r 'f64.AxpyUnitary -> f32.AxpyUnitary' \
|
||||
| gofmt -r 'f64.DotUnitary -> f32.DotUnitary' \
|
||||
| gofmt -r 'f64.ScalUnitary -> f32.ScalUnitary' \
|
||||
\
|
||||
| sed -e "s_^\(func (Implementation) \)D\(.*\)\$_$WARNINGF32\1S\2_" \
|
||||
-e 's_^// D_// S_' \
|
||||
-e 's_"gonum.org/v1/gonum/internal/asm/f64"_"gonum.org/v1/gonum/internal/asm/f32"_' \
|
||||
>> level3float32.go
|
||||
|
||||
echo Generating sgemm.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > sgemm.go
|
||||
cat dgemm.go \
|
||||
| gofmt -r 'float64 -> float32' \
|
||||
| gofmt -r 'sliceView64 -> sliceView32' \
|
||||
\
|
||||
| gofmt -r 'dgemmParallel -> sgemmParallel' \
|
||||
| gofmt -r 'computeNumBlocks64 -> computeNumBlocks32' \
|
||||
| gofmt -r 'dgemmSerial -> sgemmSerial' \
|
||||
| gofmt -r 'dgemmSerialNotNot -> sgemmSerialNotNot' \
|
||||
| gofmt -r 'dgemmSerialTransNot -> sgemmSerialTransNot' \
|
||||
| gofmt -r 'dgemmSerialNotTrans -> sgemmSerialNotTrans' \
|
||||
| gofmt -r 'dgemmSerialTransTrans -> sgemmSerialTransTrans' \
|
||||
\
|
||||
| gofmt -r 'f64.AxpyInc -> f32.AxpyInc' \
|
||||
| gofmt -r 'f64.AxpyUnitary -> f32.AxpyUnitary' \
|
||||
| gofmt -r 'f64.DotUnitary -> f32.DotUnitary' \
|
||||
\
|
||||
| sed -e "s_^\(func (Implementation) \)D\(.*\)\$_$WARNINGF32\1S\2_" \
|
||||
-e 's_^// D_// S_' \
|
||||
-e 's_^// d_// s_' \
|
||||
-e 's_"gonum.org/v1/gonum/internal/asm/f64"_"gonum.org/v1/gonum/internal/asm/f32"_' \
|
||||
>> sgemm.go
|
||||
|
||||
echo Generating level3cmplx64.go
|
||||
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level3cmplx64.go
|
||||
cat level3cmplx128.go \
|
||||
| gofmt -r 'blas.Complex128Level3 -> blas.Complex64Level3' \
|
||||
\
|
||||
| gofmt -r 'float64 -> float32' \
|
||||
| gofmt -r 'complex128 -> complex64' \
|
||||
\
|
||||
| gofmt -r 'c128.ScalUnitary -> c64.ScalUnitary' \
|
||||
| gofmt -r 'c128.DscalUnitary -> c64.SscalUnitary' \
|
||||
| gofmt -r 'c128.DotcUnitary -> c64.DotcUnitary' \
|
||||
| gofmt -r 'c128.AxpyUnitary -> c64.AxpyUnitary' \
|
||||
| gofmt -r 'c128.DotuUnitary -> c64.DotuUnitary' \
|
||||
\
|
||||
| sed -e "s_^\(func (Implementation) \)Z\(.*\)\$_$WARNINGC64\1C\2_" \
|
||||
-e 's_^// Z_// C_' \
|
||||
-e 's_"gonum.org/v1/gonum/internal/asm/c128"_"gonum.org/v1/gonum/internal/asm/c64"_' \
|
||||
-e 's_"math/cmplx"_cmplx "gonum.org/v1/gonum/internal/cmplx64"_' \
|
||||
>> level3cmplx64.go
|
Reference in New Issue
Block a user